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Today’s Internet-based applications, such as online file sharing and video

streaming services, have created exponential growth in network demand over the

past decades. As portable electronic devices (smartphones, tablets, etc.) grow in

popularity compared to PCs, remote Internet services become more accessible to

people everywhere, thus imposing an even larger traffic burden on the Internet. In

addition, sharing information across an increasingly sophisticated technical net-
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work composed of hundreds of thousands of devices raises the security threat to

user privacy, as well as the possibility of these devices being vulnerable to targeted

attacks.

Collaborative distributed systems have emerged that offer multiple network

resources to jointly fulfill common tasks for end users. As a result, users should

be entitled to securer, more reliable and much faster service. Yet, for all the

promise of these systems, they all have limitations that can make it hard to

balance three key factors: performance, security, and the necessary incentives to

keep participants honest and reliable.

This dissertation describes our research initiatives in building and adapting a

few distinct collaborative distributed systems that can help maintain this balance.

Taken together, our findings also offer solutions to meet ever-increasing privacy

and network requirements. We start with Bitcoin, a peer-to-peer network-based

decentralized cryptocurrency. Driven by the price surge of the Bitcoin network,

users are pooling their computational resources to create new blocks that can

lead to higher profits. Our research began by characterizing how the productivity,

computational power, and transaction activity of miners have evolved over time.

By considering the Bitcoin price and the computational race between miners, we

were able to build a simple economic model to explain the evolution of Bitcoin

mining practices.

To better understand network security and privacy, we developed an information-

theoretic multi-block private information retrieval (PIR) scheme that significantly

reduces client communication and computation overhead by downloading multi-

ple data blocks at a time. Our work demonstrates that a multi-block PIR scheme

can be optimized to simultaneously achieve low communication and computation

overhead, comparable to even non-PIR systems, while maintaining a high level of



www.manaraa.com

x

privacy.

Lastly, to see how incentives could be incorporated into security strategies in

practice, we proposed a cryptocurrency system called CacheCash that provides a

distributed content delivery service on top of a currency exchange medium. We

developed a reference implementation of CacheCash and evaluated its performance

in terms of computation and bandwidth requirements. The benchmark results

demonstrate that our system can quickly and efficiently deliver content to clients,

and can scale well to meet huge network traffic demands.

Taken as a whole, the research presented in this dissertation suggests practical

paths to harnessing the strong potential of collaborative networks.
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Chapter 1

Introduction

As the Internet and the devices that access it advance in sophistication and

reliability, the opportunities for employing multiple network resources to jointly

fulfill common tasks for end users continue to grow. These so called collaborative

distributed services leverage computational power and bandwidth across multiple

network nodes to enhance overall performance, scalability, reliability, and security.

For example, miners in a cryptocurrency system volunteer to pool their compu-

tational resources to solve proof-of-work puzzles and share the payout with lower

variance. Applications like BitTorrent [1] and Gnutella [2] – provide peer-to-peer

file sharing services to exchange users’ multimedia files. Another example is the

use of multi-server private information retrieval (PIR) systems [3, 4], which allow

clients to acquire desired content from multiple servers, none of which actually

know the nature of the clients’ queries [5].

However, these collaborative projects also bring with them new challenges. To

tweak and improve one single component may compromise other features. Thus,

each specific system needs to carefully balance each metric, particularly when it

comes to three key factors: performance, security, and the necessary incentives to

1
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keep participants honest and reliable.

This dissertation describes our research initiatives into maintaining that bal-

ance in a few distinct collaborative distributed systems. We first look into the

most popular decentralized cryptocurrency, namely Bitcoin. By analyzing the

public ledger, we discuss the incentives for mining and characterize the evolution

in the behavior of Bitcoin miners. In our second work, we improve the efficiency of

the classical multi-server PIR protocol. By leveraging binary and finite-field k-safe

matrix construction, our scheme can significantly lower communication overhead

and increase server goodput. Finally, we propose a secure bandwidth verifiable

CDN service called CacheCash, which is integrated with cryptocurrency as a na-

tive payment system. The performance evaluation results show CacheCash is fast,

efficient, and scalable. Collectively, all three research initiatives suggests practical

paths to maximize the strong potential of collaborative networks.

1.1 Background, Motivation and Research Strat-

egy

1.1.1 Bitcoin Network

In recent years, Bitcoin [6], a peer-to-peer network based digital cryptocur-

rency, has attracted a lot of attention from the media, academia, and the general

public. Unlike traditional currencies, which are issued by central banks, Bitcoin

is not regulated by any monetary authority. It is used in a peer-based network,

where every peer is entitled to monitor the creation of Bitcoins (BTCs) and verify

transactions. Every BTC is tied to a Bitcoin address, which provides no infor-

mation as to the owner’s identity. Therefore, all transactions along the Bitcoin
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network are anonymous and can bypass bank regulation. Investors seeking the

huge potential of the value of Bitcoin, have speculated over a number of years to

profit from the volatile exchange market. The exchange price of BTC surged to

more than 1, 200 USD in late 2013, and now fluctuates between 300 and 700 USD.

Recognized as the first decentralized digital currency in the world, since it was

deployed in 2009, Bitcoin’s market cap has grown to more than 11 billion US dol-

lars. Since that time, numerous decentralized cryptocurrencies, e.g., Ethereum [7],

Ripple [8], Litecoin [9], have flooded the market. Some have made small improve-

ments on Bitcoin’s anonymity, security, reliability, or other properties. However,

none have gained as much public attention or expanded market capitalization as

Bitcoin. Thus, the success of Bitcoin has raised significant research interest in

cryptocurrencies, and influenced many related fields.

In terms of security, Goldfeder et al. [10] proposed a new threshold signa-

ture scheme to secure Bitcoin wallets. Becker et al. [11] estimated the typical

cost structures in a Bitcoin network, and discussed the possibility of a denial of

service attack. Baqer et al. [12] conducted an empirical study to identify spam

transactions and proposed changes to transaction fees that could mitigate the ef-

fectiveness of spam DoS attacks. Eyal and Sirer [13] and Kroll et al. [14] discussed

the vulnerabilities of a Bitcoin network if powerful adversaries could potentially

manipulate mining mechanisms. Huang et al. [15] studied how malware can steal

users’ computational power to mine Bitcoins, and to deduce the amount of money

a number of mining botnets have made.

To measure activity and explore the limits of anonymity that a Bitcoin network

provides, Freid and Harrigan [16] analyzed the Bitcoin transaction flow in sampled

data and showed that publicly announced addresses can be used to link and iden-

tify Bitcoin users.Meiklejohn et al. [17] was able to cluster Bitcoin accounts owned



www.manaraa.com

4

by the same user by grouping input addresses from the same transaction. Ron

and Shamir [18] examined the entire transaction graph of the Bitcoin network to

study the pattern of abnormal transactions, while Androulaki et al. [19] designed

and implemented a simulator for Bitcoin to evaluate its privacy implications.

While these security and privacy related aspects of Bitcoin and other digital

currency have been studied at length, the incentive for Bitcoin mining and its

economic soundness are rarely analyzed. As we conducted our study, we looked

into the Bitcoin network from a new angle by focusing on changes in mining and

transaction behaviors by Bitcoin miners over time.

Understanding these behaviors starts with understanding how Bitcoin differs

from regular currency. There is no central bank or authority that decides how

many Bitcoins are to be issued and distributed. In addition, according to the

Bitcoin protocol, this currency is finite. Other than buying Bitcoins from others,

the only way for a user to acquire them is to contribute computational resources

to pack and verify new transactions. We call this process Bitcoin mining, and the

users who participate in it Bitcoin miners. The Bitcoin protocol is designed so

that new Bitcoins are mined at a steady rate until all are mined. The surge of

Bitcoin pricing motivates miners to invest in more and more powerful hardware

for faster mining. Due to the dramatic growth in both the number of miners and

the computational power of their hardware, it has become increasingly difficult to

mine Bitcoins. For an individual miner, even with powerful hardware, it now takes

a very long time if she mines by herself, a behavior called solo mining. Similar

to pooling money to buy a lottery ticket, the majority of miners choose to pool

their computational resources to mine Bitcoins together. This is known as pool

mining, and it gives individual miners steadier payouts than solo mining.

A Bitcoin network is a P2P system from which peers can obtain direct finan-



www.manaraa.com

5

cial incentives for contributing their computational resources. While the Bitcoin

price is constantly driven by various economic, political and legal factors, we are

interested in finding out how Bitcoin’s price evolution has driven miners’ behav-

iors.

Towards this goal, we conducted a measurement study by analyzing the com-

plete transaction blockchain of the network from January 3, 2009 through March

11, 2014. We first characterized how the productivity, computational power and

transaction activity of miners evolved over time. We downloaded the entire Bit-

coin blockchain, where we parsed and identified 290, 089 blocks and 34, 646, 076

transactions. Using this information, we counted the Bitcoins(BTCs) each miner

extracted each month within the network, and we correlated these BTCs to their

U.S. market value. In addition, we also estimated the overall computational power

of miners over time. We found in the early stages that computational power was

evenly distributed. Comparing the miners’ BTC generation time and their first

transaction after mining, we used the time interval as a lower bound of miners’

cash out log. From this result, we concluded that many early miners lost their

bitcoins because they did not realize their potential value.

Our next step was to conduct an in-depth study of the largest Bitcoin mining

pool, F2Pool [20]. The majority of these miners are located in the US and China.

F2Pool is a China-based mining pool where the payout rules are clear. From all

incoming BTC generation transactions and outgoing payout transactions of this

pool, we identified all pool miners from the F2Pool. It showed that the number

of pool miners increases with the rise of the BTC exchange rate. We also found

that the overall computation power of F2Pool grows at a similar rate as the BTC

exchange value.

Finally, we built a simple economic model that explains the evolution of miner
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behavior by considering the Bitcoin price and the computational race between

miners. We first evaluated the profit rate of two Bitcoin mining devices released

in 2011 and 2013, respectively. The key factors shown to dominate the profit

rate are electricity prices, Bitcoin network difficulty, and computation-over-power

efficiency. Using electricity prices from all over the world, and the most powerful

current mining device, we estimated the power upper bound of the Bitcoin net-

work, and concluded that the current Bitcoin network still has room for growth

before it reaches saturation.

1.1.2 Private Information Retrieval

In the past decades, the growth of Internet-based services has provided a vari-

ety of new products and experiences that have helped people improve their quality

of life. Whenever a user requests such a service online, for example, buying from

an online store, she needs to send personal information, such as name, address,

and a credit card number to an online server. Until recently, these user profiles

were considered individual property, which the server could not keep or use for its

own purposes. However, this assumption did not stand long. Large websites now

claim the right to store user information for the stated aim of recommending new

products, based on previous shopping choices.

At the same time, online users are now more conscious of the need to protect

their privacy. They do not want their personal preferences used for any purpose

other than their desired ones. In regard to network applications, a user often

desires to retrieve information from a server without revealing exactly what she

wants to download. For example, an inventor may want to query a patent database

without revealing which patents she wants to access [21], or a trader may want to
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get specific stock quotes without revealing the companies in which she is interested

[22], or a client may want to download a security update without revealing which

unpatched vulnerability the update addresses [23]. Private Information Retrieval

(PIR) allows users to retrieve queries from a database without revealing what they

seek to anyone or anything, including the database server itself.

One way to keep the server ignorant of the nature of a query is for the client to

download the entire database. However, this scheme incurs huge communication

overhead. In the original PIR protocol, proposed by Chor et al. [3], lowering the

communication overhead was accomplished by deploying multiple servers, each

with a replicated copy of the database. A client requests a partial masked secret

from different servers, and reconstructs the desired data. The overall bandwidth

between the client and servers is strictly less than the size of the database. We

call such protocol non-trivial PIR. The security property lies in the assumption

that the number of servers that communicate with each other is no more than

threshold k. Even if the adversary has unlimited computational power, in theory,

the assumption guarantees the privacy unbreakable. Thus we call such a protocol

information-theoretic PIR.

Information-theoretic PIR relies on deployment of multiple databases. Chor

et al. [3] shows that it is impossible to achieve a single-database non-trivial PIR.

However, with the assumption that a quadratic residuosity problem is hard, a

PIR scheme with one copy of the database is viable to meet the non-trivial re-

quirement. We call such a protocol a computational PIR [24–27]. Unfortunately,

due to communication complexity, these PIR protocols are known to be imprac-

tical [28] and there is no real-life deployment. Thus, information-theoretic PIR

becomes a better choice to bring the zero knowledge query to practical use. How-

ever, the high communication overhead is still a barrier, since a client may need
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to expend much more download time to retrieve the content she wants. If the

content is time sensitive, or its size is extremely large, such a PIR protocol is not

feasible. Henry et al. [29] proposed a multi-block scheme for Goldberg’s [30] de-

sign by encoding multiple data block requests into a single PIR query. However,

in order to tackle Byzantine failure [31] and enhance robustness, their scheme

applies both computationally-expensive operations over a finite field, with error-

correcting codes. The resulting system incurs high communication overhead and

slows client decoding time. Demmler et al. [32] developed a multi-block scheme

that further reduced the communication overhead, but compromised the flexibility

to retrieve any query result.

Our goal is to develop a PIR protocol that significantly reduces the client

download time, thus lowering communication overhead, and increasing the server

goodput. In our work, we propose the first matrix-based information-theoretic

PIR scheme that combines multiple block requests, while using fast XOR oper-

ations instead of more computationally-expensive operations. Using fast XOR

operations allows us to reuse the same high performance PIR mirror infrastruc-

ture that has been shown to have similar goodput to FTP on realistic datasets

and deployment environments [23]. However, using multiple block requests has

benefits over this existing PIR scheme. By leveraging multiple block requests, our

proposed scheme can further increase performance and reduce communication

overhead by a factor of up to three.

We also developed a finite-field based PIR scheme to further reduce the com-

munication overhead. Our basic finite-field scheme assumes there is no Byzantine

mirror in the system and focuses on minimizing the communication overhead.

By sacrificing the mirror computation load and goodput, the finite-field scheme

achieved even lower communication overhead than the binary matrix scheme by



www.manaraa.com

9

a factor of up to 14 in extreme cases. We then augmented the basic finite-field

scheme with a simple, yet robust, detect-retransmit mechanism to handle Byzan-

tine failures, following the design philosophy of “make the common case fast and

make the uncommon case correct.”

Finally, we built prototypes to validate the benefits of binary and finite-field

schemes in practical environments. Through extensive experiments, we showed

that both binary and finite-field multi-block PIR schemes have much lower com-

munication overhead than classic PIR schemes. While maintaining a high-level

of privacy, the mirror goodput is even comparable to systems that do not offer

privacy, such as HTTP and FTP.

1.1.3 Distributed Data Service

Over the past few decades, Internet traffic has grown exponentially due to the

acceleration of network-based services, which make numerous demands and require

extensive bandwidth. Many of these services were originally offline. Traditionally,

users who wanted to share their media content have had to physically exchange

storage media with each other. In the past, movie lovers needed to rent movies

from a local video store in order to watch with their friends and family.

Nowadays, Internet-based services have developed at such a fast pace that ser-

vice providers can offer users faster and cheaper services with easy access. Online

file sharing services, e.g., BitTorrent and Gnutella, offer users the opportunity to

exchange data over a peer-based network that partitions the workload to boost the

transferring speed and improve reliability. Online video streaming services, such

as Netflix [33] and Amazon Video [34], offer high quality movies and TV shows for

smart TV, PC, and smartphone users to watch at anytime anywhere. Simply by
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clicking a mouse, one online user can transfer files to another or instantly watch

online streaming. Users enjoy the service, and leave it to the internet and their

service provider to take care of the rest.

All of these applications rely on distributed services that collaboratively of-

fload workloads to multiple network nodes, thus improving overall performance.

Nonetheless, with tremendous traffic demands, a multiple-connection infrastruc-

ture incurs extensive communication overhead. Such an overhead brings both

security and reliability issues that largely increase the risk of exchanging data

over the network, while lowering the efficiency of bandwidth utilization as well.

In the last decade, content delivery services have grown 45% - 50% per year. With

regard to these aspects, researchers are challenged to improve the speed, security,

and reliability of data exchange among devices.

Content delivery networks (CDNs) have emerged as an attractive solution to

distribute the workload [35–37]. The core idea is to replicate the media content

and disburse it among geographically distributed servers, also called caches, to

serve clients on behalf of the original content providers. Content providers may

construct their own CDN or buy the service from a third party, such as Aka-

mai [38]. However, infrastructure based CDNs are considered expensive, due to

the costs of deployment and continuous maintenance. Inspired by peer-to-peer

(P2P) networks, peer-assisted CDNs evolved as a low overhead and decentralized

solution that relies on exploiting end users’ bandwidth to distribute data [39,40].

However, this flexibility in allowing any user to be part of the network raises sev-

eral challenging questions: What motivates peers to use their bandwidth to serve

others? Can we trust any party to distribute the correct content? And is there a

guarantee that these parties will follow the protocol?

Incentive-based paradigms have been introduced to motivate collaboration be-
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tween peers [41]. An early example is the tit-for-tat protocol in Bittorrent [42],

where one serves data to get data. This mechanism, though, suffers from the

free-riders problem of peers consuming more resources than they provide. Mone-

tary incentives proved to be more effective since they create a market for trading

available bandwidth [41, 43]. While this strategy has clear advantages, involving

monetary incentives in large-scale systems can complicate payment processing.

An early approach was to have a trusted party track payments for all partici-

pants, e.g. [39]. Such an approach is simple and secure, as this trusted entity can

solve any dispute that may arise. Nevertheless, it introduces a single point of trust

and a potential bottleneck for efficiency. This conflicts with the goal of having a

distributed, flexible, and scalable content distribution system.

As an alternative to this centralized model, Bitcoin [6] has emerged as the

first successful and widely-used cryptocurrency system. Bitcoin combines the use

of basic cryptographic primitives, a proof of work concept, a publicly verifiable

blockchain, and a distributed consensus protocol to provide a decentralized cur-

rency exchange medium. In addition, several systems have evolved to support

extra services on top of Bitcoin’s basic functionality [44–46], which create new op-

portunities to support decentralized monetary incentives in peer-assisted CDNs.

With a knowledge of these technologies, we set out to design a practical system

to provide content delivery with low deployment costs. Users are incentivized to

serve as caches to help content providers offload network traffic for a fair price. The

system integrates cryptocurrency as a monetary payment method that relies on a

decentralized consensus protocol to monitor and verify transactions. In addition,

the system we design should be secure due to assumptions on certain threats.

Towards this goal, we propose a system called CacheCash that combines the

best features of CDNs and Bitcoin. CacheCash is a cryptocurrency based stor-
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age/bandwidth market where users can rent their storage and sell their extra

bandwidth to content providers. It adopts the layered structure from CDNs in

which content providers own the material, but delegate the task of serving clients

to caches, which distribute replications of this content. Like a P2P network,

CacheCash allows anyone to join the system as either a content provider or as

a cache. Content providers pay caches to serve their clients. Hence, CacheCash

enables the building of dynamic CDNs with lower overhead than infrastructure-

based networks, but in a more organized way than in P2P networks. To ensure

fair payments and accountability, CacheCash provides a publicly-verifiable ser-

vice that uses a blockchain as a trusted log to make cheating detectable, and thus,

unprofitable.

We conducted a thorough study to understand the performance of CacheCash.

Our assessment asked the following questions:

• How quickly does CacheCash serve content?

• How efficiently can clients retrieve this content?

• Can CacheCash scale to handle larger demands?

We set about answering these questions by implementing a CacheCash data service

protocol and evaluating the efficiency of the various modules of the system against

several performance measures. We show that CacheCash benchmarks demonstrate

its efficiency in terms of computational and bandwidth requirements, and, that

it can easily scale to handle large scale CDN dissemination, such as distributing

Netflix content.
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1.2 Dissertation Outline

This thesis is organized as follows:

Chapter 2 starts with a short survey of a Bitcoin network. Then we explain our

methodology and investigate the blockchain of such a network. Finally, we analyze

our measurement results and discuss and characterize how mining behaviors have

changed over time.

In Chapter 3, we present the PIR system architecture and threat model. Then

we show two novel information-theoretic PIR schemes: binary matrix-based PIR

and finite-field based PIR. Finally, we evaluate the performance of the proposed

multi-block PIR schemes.

In Chapter 4, we first present an overview of our proposed cryptocurrency-

based content delivery service system. We then present the details of the data

service protocol, and conduct a thorough performance evaluation of the system.

In Chapter 5, I summarize my contributions to academic research while pur-

suing my Ph.D. degree in Computer Science, and point out directions for my

future work. The chapter also offers some concluding thoughts about my work as

a whole.
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Chapter 2

Exploring Miner Evolution in

Bitcoin Network

This work represents a collaboration with my thesis advisor Yong Liu.

Bitcoin [6] is known as the first decentralized digital currency in the world [47].

As a modern cryptocurrency supported by a peer-to-peer network, Bitcoin users

can conduct instant, secure, and anonymous financial transactions without ser-

vice fees. Unlike traditional currency, which is issued and regulated by a sovereign

bank, Bitcoin is not controlled by any institution or country. It circulates glob-

ally without boundary and is free from financial regulation systems due to its

decentralized P2P accounting and transaction design. Bitcoin debuted in 2009

and after five years of development, its exchange price has risen from nothing to

more than $100 per coin through mid 2013. It surged to a peak of $1, 242 on

November 2013, and is now wobbling between $350 and $600. Till September

2014, the market capitalization of Bitcoin has increased to around 6 billion US

dollars; and the Bitcoin network runs more than 60, 000 transactions daily. Along

with Bitcoin network’s capitalization and volume, a number of derivative services

14
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have been developed and regulated. Exchange markets, such as Coinbase [48]

and Bitstamp [49], allow users to buy and sell Bitcoins using regulated currencies

globally. Online merchants, e.g., Dell and Overstock, are now accepting Bitcoin

as a payment method. Governments of several countries, such as Canada and

Thailand, have approved fully-legal Bitcoin exchange and issued tax guidance on

Bitcoin transactions.

Different from a regulated currency, there is no central bank or authority

who decides how many Bitcoins are to be issued and distributed. According to

the Bitcoin protocol, there are only a finite amount of Bitcoins. In addition to

buying Bitcoins from others, the only way for a user to acquire Bitcoins is to

contribute her computation resources to pack and verify new transactions. We

call this process Bitcoin mining, and the users who participate as Bitcoin miners.

The Bitcoin protocol is designed so that new Bitcoins are mined at a steady rate

until all Bitcoins are mined. The surge of Bitcoin price motivates Bitcoin miners

to invest in more and more powerful hardware for faster mining. Due to the

dramatic growth in both the number of Bitcoin miners and the computational

power of their hardware, it has become increasingly difficult to mine Bitcoins.

For an individual miner, even with powerful hardware, it now takes a very long

time to get Bitcoins if she mines by herself, as a so-called solo miner. Similar to

pooling money to buy lottery tickets, the majority of miners choose to pool their

computational resources to mine Bitcoins together. Pool mining, as it is called,

gives individual miners steadier payouts than solo mining.

The Bitcoin network is a P2P system in which peers can obtain direct finan-

cial incentives by contributing their computation resources. While the Bitcoin

price is constantly driven by various economic, politic and legal factors, we are

interested in finding out how the fluctuations in Bitcoin value drives the miners’
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behaviors. Towards this goal, we conduct a study on the evolution of Bitcoin

mining practices by analyzing the complete transaction blockchain of the Bitcoin

network from its very first transaction in 2009 to March 2014. We first character-

ize how the productivity, computational power and transaction activity of miners

have developed over time. We then conduct an in-depth study of the largest min-

ing pool F2Pool [20]. We characterize how it grows and how its computational

power is distributed among its heterogeneous members. Finally, we build a simple

economic model to explain the connection between the evolution of the mining

behavior shifts and the fluctuation of Bitcoin prices and the computational power

of the miners.

2.1 Survey of Bitcoin Network

2.1.1 Account and Transaction

The Bitcoin network is a peer-to-peer network without a central authority. A

Bitcoin account is simply a pair of public/private keys. An account ID is derived

from its public key. The private key is used to generate a digital signature for

authentication. There is no cost to create a Bitcoin account, and each user can

create as many accounts as she wishes. A transaction is a mechanism for users to

transfer Bitcoins to each other. A transaction consists of a set of senders and a set

of receivers (denoted by their account IDs), the amount from each sender, and the

amount to each receiver. For example, if Alice wants to send 3 Bitcoins (BTCs) to

Bob, she might send from two of her accounts. One account A1 has 1 BTC and the

other account A2 has 2 BTCs. If Bob has only one account, B1, this transaction

is simply: 1 BTC from A1, 2 BTCs from A2, and 3 BTCs to B1. All senders will
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sign the transaction with their private keys, and the signed transaction will be

broadcast to the entire Bitcoin network. Any user who receives this transaction

will first verify whether the senders have the amount of BTCs indicated in the

transaction. Different from the traditional banking systems, there is no central

database to maintain the Bitcoin balance of each account. Instead, the whole

Bitcoin network stores and verifies all the transactions using a shared blockchain.

Any user can check the balance of any account by backtracking the blockchain

to retrieve all transactions associated the account. Invalid transactions will be

discarded, and valid ones will be stored in memory to be packed and appended to

the blockchain.

2.1.2 Block and Blockchain

The blockchain is a public ledger shared by the whole Bitcoin network. As

the name suggests, the blockchain contains a chain of chronologically ordered

blocks, each of which contain a generation transaction indicating which account

packed this block, within a time window of ten minutes. Each user downloads

and synchronizes a copy of the blockchain in her local machine to verify incoming

transactions. All newly confirmed transactions are packed into a new block, which

will be broadcast to the whole network. Whenever a user receives a block, she

will validate all the transactions in this block using the current blockchain. If any

transaction is invalid, she will discard the block. Otherwise, this block will be

confirmed and appended to the current blockchain.
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2.1.3 Bitcoin Mining

The Bitcoin network depends on the computational resources of users to main-

tain the integrity of the blockchain. Each user can volunteer to verify and pack

new transactions to blocks. While a lot of users are doing the verification and

packing work simultaneously, only the newest valid block will be confirmed by

all users and appended to the current blockchain. The user (miner) who created

this block will be rewarded with BTCs (the current reward is 25 BTCs/block).

To achieve this, a proof-of-work mechanism is introduced. When packing new

transactions to a block, a miner first generates a special transaction indicating

that the network sends her the mining reward. Along with all other transactions,

she repeatedly generates a random number nonce, puts them together and runs

a hash function. If the hash value is below a target value, the user claims she

created the block and broadcasts the block and the nonce. Other users can easily

perform the same hash function with the published nonce to verify the block.

According to Nakamoto’s protocol [6], the total number of BTCs that can be

mined is 21 million and the last BTC to be mined is in block #6, 929, 999 near

year 2140. By default, a new block is created approximately every ten minutes,

no matter how much aggregate computational power is in the network. To control

the new block creation speed, a difficulty value is introduced. The target value

for block hash calculation is inversely proportional to the difficulty value. As a

result, the higher the difficulty value, the more hash calculations each miner has

to conduct to find a hash value below the target. As detailed in [50], at a given

difficulty value D, for a miner with the computational power of H hashes per
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second, the expected time for the miner to generate a new valid block is:

E[T ] =
D × 232

H
seconds. (2.1)

The difficulty value is updated every 2, 016 blocks, based on the speed at which

the past 2, 016 blocks were generated. The difficulty value is stored in each block.

Knowing how many BTCs are generated in the whole network in one day, given

the difficulty value, we can also calculate the total hash rate of the system.

Solo and Pool Mining

In the early days of Bitcoin, miners worked alone. We call this approach

solo mining. The advantage of solo mining is whenever a block is created by

the miner, she gets all the rewards. However, as more and more computational

resources are injected into the Bitcoin network, the difficulty value to control the

new block creation speed increases significantly. Now it takes a powerful miner

years to create a block. As an alternative, pool mining is a way for miners to

combine their resources together to obtain steady payouts. A pool assigns a lower

difficulty value to each of its members. It becomes easier for each miner in the pool

to solve the hash problem and prove their work. Notice that if a higher difficulty

is given by the network, miners who have tiny hash rates have less chance to solve

the hash problem and it is harder to prove their work. Each pool miner submits

her own hash values under the pool target value (called shares) to the pool for

verification. If a share is under the network target value, a block will be claimed

by the pool and the pool operator will distribute the reward to every pool miner.

The most popular payout approach for pool mining is pay-per-share, in which

miners are rewarded proportionally to the number of shares they submitted to



www.manaraa.com

20

the pool. With pool mining, the expected payout for a miner is the same as solo

mining, but the variance of payout is largely reduced.

2.2 Methodology

2.2.1 Data Collection

As described in Section 2.1, all transactions in Bitcoin network are stored in

the blockchain. When a user wants to make a transfer, she must first connect

to the Bitcoin network and synchronize with the current blockchain. To begin

our investigation, we ran the Bitcoin client in our local machine to get the latest

blockchain. We then parsed it to blocks and transactions. Each block contains

its hash value, height (block ID), hash value of the previous block, generation

time (in UTC timestamp), the amount of new BTCs created, target difficulty,

nonce, and all transactions. For each transaction, inputs include the previous

transaction hashes of the senders and the associated signature scripts; outputs

include the receiver account IDs and their corresponding amounts. We use the

previous transaction hash to retrieve the transaction history and the balance of

each sender by iteratively backtracking the blockchain. We synchronized the com-

plete blockchain in March 2014 and parsed the data. The raw data includes all

blocks and transactions from 2009/01/03 (the very first Bitcoin block created)

to 2014/03/11. We retrieved 290,089 blocks and 34,646,076 transactions. We

then parsed all blocks and transactions field-by-field and stored all the parsed

information into a MYSQL database.
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2.2.2 Solo Miner Analysis

According to the blockchain, pool mining only started on December 16, 2010

[51]. All previous miners were solo miners. In pool mining, each group uses

one unique ID to mine Bitcoins. We first assume each unique Bitcoin ID who

successfully created a block as a solo miner. As a result, we treated pools as solo

miners for now. Using block timestamps, we counted the number of BTCs mined

each month in the network. In addition, using Bitcoin exchange market data [48]

we calculated the monthly USD generated in the network, on the assumption

BTCs were exchanged for USD at market price immediately after they were mined.

Moreover, we also obtain the distribution of how many BTCs each miner mined

over time.

Besides the earnings, we can also estimate the aggregate computational power

of all miners. With a given difficulty value of D, if N blocks were mined in a day,

based on (2.1), the aggregate daily hash rate of the entire Bitcoin network can be

estimated as:

Htotal =
N ×D × 232

86, 400
(2.2)

Similarly, we can estimate a miner’s daily hash rate by replacing N with the

number of blocks mined in a day.

We are also interested in when the miners cashed out their BTCs after mining.

However, it would be hard to collect IDs of all Bitcoin exchange markets in order

to track all transactions. Instead, for each miner we track the interval between

the time she mined some new BTCs and the time when her next transaction was

issued. This time interval serves as a lower bound for her cash out lag.
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2.2.3 Pool Miner Analysis

To study how the Bitcoin mining pool evolved, we collected pool data from our

database. We choose miner IDs with top hash rates in the network and manually

classified them. Most of these IDs belong to well-known mining pools, according

to Blockchain.info, an online Bitcoin statistics website. To analyze pool mining

behaviors, we choose F2Pool, a China-based mining pool whose payout rule is

clear and payout transactions are easy to obtain. In our data up to March 2014,

F2Pool ranked 7th in terms of the total computational power in the network.

Newer statistics [52] from September 2014 show F2Pool has become the largest

mining pool, with more than 25% of the overall computation power.

We query transactions having F2Pool’s account ID and classify them as input

or output. For transactions having F2Pool ID as the only receiver, we identify

whether they are block generation transactions. For a transaction having it as

the only sender, we validate whether the transaction is used to distribute payouts

to pool miners. Pools have different approaches to payouts. The simplest way

is to send out all payouts in one transaction immediately after each block is

created. However, none of the ten pools we checked use this approach. Some

pools use a binary tree-like iterative payout approach, which pays only one pool

miner and transfers the remaining balance to a new ID at each iteration. And

some pools randomly choose a number of miners to pay in one transaction and

transfer the remaining balance to a new ID, and then distribute the remaining

balance in subsequent transactions. When F2Pool mines a block, it will send out

the payouts in the next day. It used to send out payouts to all members using a

single transaction, but changed to two transactions recently. Knowing the payout

mechanism, we can calculate how many BTCs each pool miner earns each day
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from pool payout transactions.

2.2.4 Simple Economic Model for Miners

To become a miner, a user first needs to invest in hardware, ranging from

conventional computers in the early days of Bitcoin, to graphics card, GPUs, and

specially designed ASIC chips, and incurs a capital cost. After she joins the net-

work for mining, she needs to pay the bill for electricity, air conditioning, housing

and maintenance etc., and incurs an operational cost. Since miners are driven by

profits derived from the mined Bitcoins, the economic question is whether and

how soon their revenues can cover their capital and operational costs? To answer,

we build a simple economic model. For a hardware with hash rate H, based on

Equation (2.1), and assuming the hardware works 24 hours per day, the expected

number of BTCs it can mine daily is:

N(t,H) =
H × 86, 400

D(t)× 232
R, (2.3)

where D(t) is the difficulty value in day t, and R is the number of BTCs rewarded

for each block. If the hardware’s power consumption is P kw, and the electricity

price is η(t) per kwh, the daily electricity bill is 24Pη. Given the Bitcoin exchange

price of ρ(t) in day t, if we only consider electricity operational cost, the daily profit

rate r(t) for the hardware with hash rate H and power consumption P is:

r(t,H, P ) = N(t,H)ρ(t)− 24Pη(t). (2.4)

Obviously, a miner prefers places with low electricity price η(t), and will shut

down her hardware whenever the profit rate becomes negative. Based on (2.3)
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and (2.4), to maintain a positive profit rate, the hardware’s computation-over-

power efficiency should satisfy:

H

P
> K

η(t)D(t)

Rρ(t)
, (2.5)

where K is a constant. As D(t) increases, hardware with low computation-over-

power efficiency will be quickly kicked out of the mining game.

To obtain high profit rate, miners should go for specialized mining hardware

with high computation-over-power efficiency. That hardware comes at a high

price, though. If the miner purchased a piece of expensive hardware at day t0

with price C, the time τ it takes her to recover the capital cost should satisfy:

∫ t0+τ

t0

r(t,H, P )× I[r(t,H, P )]dt = C, (2.6)

where I[x] is the indicator function which equals 1 if x > 0, and 0 otherwise.

2.2.5 Limit of Computational Race

According to Equation (2.4), miners are highly incentivized to increase their

computational power to obtain higher profit margin. The Bitcoin network has

witnessed exponential computation power growth in the past few years. But, at

the same time, the number of Bitcoins that can be mined each day is deliber-

ately set by the network to a fixed value. If the Bitcoin price is kept flat, the

total profit that miners can obtain from the network is a constant. All miners are

essentially playing a zero-sum computational race game: if each miner increases

her computational power, then the total computational power in the network

increases. Consequently, the system increases the difficulty value D(t) to main-
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tain a steady Bitcoin creation speed, which, in turn, reduces the Bitcoin mining

rate of individual miners, according to Equation (2.3). This is an unfortunate

and unavoidable tragedy-of-the-commons phenomenon that has been observed in

the Bitcoin network. Such a race will automatically end when the profit mar-

gin hits zero. We can predict the equilibrium point by extrapolating from our

simple economic model in the previous section. Namely, let ξ0 be the highest

computation-over-power efficiency (in units of hash-per-second/kilowatt) that the

future computation technology can achieve, η0 be the lowest electricity price in

the world, and ρ0 be the steady state exchange price of Bitcoin, we could then

immediately calculate the maximum sustainable computational power H in the

whole Bitcoin network as:

H
ξ0
η0 = 6Rρ0, ⇒ H =

6Rξ0ρ0
η0

, (2.7)

where the left-hand side of the first equation is the minimum electricity charge for

one-hour of mining with the most efficient mining hardware, and the right-hand

side is the expected hourly total payout in the whole network at the target mining

rate of one block every ten minutes. If the total computational power goes above

H, the expected profit margins of all miners become negative, and some of them

will start to drop out of the mining race. As this occurs, the profit margin comes

back to positive.

So far we ignored the capital cost and other operational costs. Therefore

Equation (2.7) gives us an upper bound on the maximum sustainable computation

power at any fixed Bitcoin price ρ0, given the highest feasible computational

efficiency ξ0 and the lowest electricity price η0.
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2.3 Characterization Results
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Figure 2.1: Monthly BTC statistics

Figure 2.1a plots the total Bitcoins generated each month on the blockchain.

In 2009, the numbers were not stable because the Bitcoin client was newly released

and the size of the network was relatively small. In December 2012, the reward R

for each block was reduced from 50 BTCs to 25 BTCs, resulting in the number of

BTCs being reduced by half in the latter months. Figure 2.1b shows how many

USDs are generated monthly, according to the daily Bitcoin to USD exchange

price.

2.3.1 Solo Miners

Figure 2.2 illustrates the distribution of solo miners’ annual earnings. Before

August 2010, there is no market data and the estimation of BTC value is $0. The

earnings in latter years are tremendously greater than in the earlier years due to

the rapid rise in the exchange price. In addition, the top miners became more and

more computationally powerful and were responsible for the most blocks created.

Similar to (2.3), we estimated the hash rate for each solo miner, based on the



www.manaraa.com

27

number of blocks she created.
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Figure 2.3: CDF of miners’ annually earning

Figure 2.3 shows the minimum, maximum and mean hash rate of solo miners

together with the system regulated difficulty value in logarithm scale. It shows

that the computational power is evenly distributed among miners at the the early

stage, then becomes highly skewed towards a small number of very powerful miners
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as the Bitcoin network evolves. As will be studied next, the top mining figures

indeed represent mining pools.

We now examine how quickly miners transfer out mined Bitcoins. We mea-

sured the time lag between when a miner claimed a block and her next transaction.

If a miner had no subsequent transaction in our trace, we tagged the miner as

frozen. For active miners, we calculated the average and distribution of their

transfer lags.

Frozen Miners Active Transfer Lag
2009 66.36% 138 Days
2010 20.13% 102 Days
2011 1.89% 19 Days
2012 0.49% 7 Days
2013 0.96% 1.5 Days

Table 2.1: Fraction of frozen miners and average transfer lag of active miners

As shown in Table 2.1, a large fraction of early miners were frozen and never

touched their mined Bitcoins, even after the Bitcoin price surge in 2013. Our

conjecture is that those early miners were casual early adopters of Bitcoin as a

fun technology, and were not motivated by its potential financial value. When

Bitcoin became valuable, they might have, unfortunately, lost their account IDs,

so that they couldn’t cash out. This suggests that lots of Bitcoins mined in the

first two years might have been lost permanently! Things changed completely in

2011. Not surprisingly, this is in sync with the value increase of Bitcoins. Not

only are almost all miners active, but the lag for transfer gets shorter and shorter.

The slight increase in frozen ratio from 2012 to 2013 is due to the artifact that

our trace ends in March 2014.

Figure 2.4 further illustrates the decreasing trend of transfer lags as time

evolves. This suggests that later miners were explicitly driven by profits and
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diligently transferred out mined Bitcoins.

2.3.2 Pool Mining

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
ay2013

Jun2013

Jul2013

Aug2013

Sep2013

O
ct2013

N
ov2013

D
ec2013

Jan2014

Feb2014

M
ar2014

Apr2014

N
u

m
b

e
r 

o
f 

M
in

e
rs

Date

(a) Miner growth

 0

 0.05

 0.1

 0.15

 0.2

M
ay2013

Jun2013

Jul2013

Aug2013

Sep2013

O
ct2013

N
ov2013

D
ec2013

Jan2014

Feb2014

M
ar2014

Apr2014

P
e

rc
e

n
ta

g
e

Date

(b) Computation share

Figure 2.5: F2Pool miner statistics

Figure 2.5a shows the increase in the number of miners in F2Pool. We can see

that from May to October 2013, the number of pool miners is relatively stable.

This is due to the stable Bitcoin price of around $120 in that period. Figure 2.5b

plots the ratio between F2Pool’s computational power over that of the whole

network. The ratio is also relatively stable from from May to October 2013.
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Starting from November 2013, motivated by the price surge of Bitcoin, the number

of miners increased by more than ten times up to March 2014. As illustrated

in Figure 2.5b, F2Pool’s computational share also increased dramatically. This

indicates that more miners chose to join pool mining in the face of increasingly

tense competition between miners.
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Figure 2.6: F2Pool miner hash rate vs. pool hash rate.

In Figure 2.6, we estimate the mean and median hash rate of F2Pool miners,

and how much computational power is controlled by the top 10% of pool min-

ers. The mean is larger than the median and the top 10% miners dominate the

computational power of the pool. This is because the hash rates of the top pool

miners are significantly larger than the low-end miners. Since a miner’s earning

in a pool is proportional to her hash rate, the earnings distribution among miners

in a pool conforms to the power law wealth distribution in the real world.

2.3.3 Economic Considerations

Curious about whether miners can earn their investment back, we chose two

mining hardwares released in 2011 and 2013, respectively. The first one is a MSI
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Radeon HD 6990 graphics card with 750 MHash/sec and 410 Watt. The price for

this card at release was $699. By 2010, mainstream miners were using graphics

cards to do mining instead of CPUs. We set a starting date of 07/01/2011,

and calculated the card’s profit rate according to Equation (2.4) using the real

Bitcoin price and electricity prices in the US and Italy, respectively. As shown

in Figure 2.7a, this card generates positive profits in the US, breaks even (earns

$699 back) on April 30, 2013, and continues to make money until September

2013. Then the daily earning become negative even though the Bitcoin price

kept increasing. This is because, as more miners joined the system, the difficulty

value increased at a faster pace than the Bitcoin price. According to (2.5), the

card’s computation-over-power efficiency can no longer sustain a positive profit

rate. Meanwhile, due to a higher electricity price (see Table 2.2), mining in Italy

seldom made a profit. There is no way for the miner to recover her capital cost.

In late 2012 and early 2013, powerful ASIC hardware entered the mining mar-

ket. We estimated the cost of BFL SC 5G/s mining cube, a 5, 000 MHash/sec and

30 Watt advertised ASIC chip for just $274. We found that if it were purchased

on July 1, 2013, whether in the US or Italy, it would have broken even in less than

one month. The major reason is that the computation-over-power efficiency of

this new card is about one hundred times higher than the MSI Radeon HD 6990

graphics card.

Country Italy UK Belgium US Sweden
Average electricity price
in 2013 (cent per kwh) 20.56 13.61 11.77 9.33 8.25

Computational power bound
(THash/sec) 473,325 715,031 826,812 1,043,041 1,179,584

Table 2.2: Sustainable computational power under current BTC prices

Finally, we estimated the computational power upper bound of the Bitcoin
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Figure 2.7: Daily mining profit rate and break-even time.

network according to Equation (2.7). We use the current Bitcoin price and the

average electricity prices in different countries [53] to estimate mining costs. We

chose the current best hardware SP35 YUKON ASIC chip, which has 6 THash/sec

and 3, 500 Watt. Table 2.2 shows as electricity prices vary, the network compu-

tational power upper bound can differ by a factor of 2.5. The current Bitcoin
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network has a computational power of 248, 116 THash/sec. There is still room

for growth. Since on average the network computational power doubles every two

months, our conjecture is that the network will saturate in about half a year, given

that the Bitcoin price and mining hardware efficiency stay still.

2.4 Summary

To summarize our work, we characterized the evolution of Bitcoin miners’

productivity, computation power and transaction activity by analyzing the full

blockchain in the Bitcoin network. We showed how the largest mining pool in

Bitcoin grows over time and how computational power is distributed among its

miners. We also built a simple economic model that explains the evolution of

mining hardware and predicts the limit of the computational race between miners.
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Chapter 3

A Fast Multi-Server, Multi-Block

Private Information Retrieval

Protocol

For this work, I served as principal investigator, along with Trishank Kup-

pusamy, Yong Liu, and Justin Cappos. My research contributions to this project

included the design of both binary and finite-field based k-safe matrix construc-

tion schemes, and the development of the two multi-block PIR schemes. I also

conducted the performance evaluation. Trishank helped to set up the experi-

ment and obtained the benchmark results used in the evaluation. Professors Liu

and Cappos contributed insights and suggested research directions as the project

evolved.

In many network applications, a client would like to retrieve information from

a server without revealing exactly what it wants to download. For example, an

inventor may want to query a patent database without revealing which patents

she wants to retrieve [21], a trader may want to get specific stock quotes without

34
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revealing the investment she may have or want to make [22], or a client may want

to download a security update without revealing what unpatched vulnerability

it addresses [23]. Private Information Retrieval (PIR) allows users to retrieve

information from a database without revealing the query to anyone – including

the database server itself. Computational PIR [24–27], which leverages, a single

database server, is known to be impractical [28]. However, recent results have

shown that information-theoretic PIR [3], which uses multiple mirrors containing

copies of the server data, can, in some cases, perform in a similar manner to a

non-PIR systems [23,54].

In classic multi-server information-theoretic PIR schemes, each mirror keeps

a replicated copy of the database. In order to retrieve one data block, a client

needs to send multiple random binary coefficients as requests to different mirrors,

and decode from those received mixed blocks [3]. While binary calculation can

be fast on mirrors, privacy comes at the price of greatly increased communication

overhead. More recently, Henry at el. [29] showed that if a client requests multi-

ple data blocks, it is possible to reuse randomly mixed data blocks across multiple

requests. Although this reduces communication overhead while maintaining the

same level of privacy, the use of an error-correcting code results in a constant

communication overhead, that cannot be further reduced. Moreover, the above

work we discussed leverage computationally-expensive encoding and decoding op-

erations that substantially decrease the throughput of the resulting systems.

This work includes three major contributions. First, we present the first

matrix-based information-theoretic PIR scheme that combines multiple block re-

quests with the use of fast XOR operations instead of more computationally ex-

pensive operations. Using fast XOR operations allows us to reuse the same high

performance PIR mirror infrastructure that has been shown to have similar good-
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put to FTP on realistic datasets and deployment environments [23]. However,

using multiple block requests has added benefits. By leveraging multiple block

requests, our proposed scheme can improve performance and significantly reduce

communication overhead.

Secondly, we develop a finite-field based PIR scheme to further reduce the com-

munication overhead. Our basic finite-field scheme assumes there is no Byzantine

mirror in the system and focuses on minimizing the communication overhead.

By sacrificing the mirror computation load and goodput, the finite-field scheme

achieves even lower communication overhead than the binary matrix scheme (by

a factor of up to 14 in extreme cases). We then augment the basic finite-field

scheme with a simple yet robust detect-retransmit mechanism to handle Byzan-

tine failures, following the design philosophy of make the common case fast and

make the uncommon case correct.

Thirdly, we build prototypes to validate the benefits of both these schemes

in practical environments. Through extensive experiments, we show that both

binary and finite-field multi-block PIR schemes have much lower communication

overhead than the classic version. While maintaining a high-level of privacy, the

mirror goodput is even comparable to systems offering no privacy protection, such

as HTTP and FTP.

3.1 Architecture and Threat Model of Private In-

formation Retrieval

3.1.1 Architecture

A PIR system typically has three components.
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• Vendor: A vendor produces a database containing blocks of data desired by

clients. This database is public and can be read by any party. The vendor

builds a manifest for this database that describes the secure hashes of each

block. The vendor is also responsible for maintaining a list of correctly-

operating mirrors.

• Client: A client requests one or more blocks of data from the database. In

order to retrieve data, a client first contacts the vendor to get the list of

mirrors and the manifest. The client then makes requests to the mirrors to

retrieve content.

• Mirror: A mirror obtains a copy of the database and provides blocks of

data to the client. When a mirror gets a request from a client, it generates a

response according to the request (described below) and sends back a signed

response to the client.

3.1.2 Threat model

To understand the scope of the issues that our work will address, we use the

following threat model which comes from prior work [3, 23].

• The vendor is trusted to produce a valid database that the client wishes to

retrieve. The vendor is largely trusted but wishes to reduce its bandwidth

consumption by offloading client download requests to mirrors.

• Non-malicious mirrors may fail at any time, and will not respond to client

queries.

• A malicious party may operate one or more mirrors. Therefore, the adver-

sary may see all communications and decode any encrypted messages for
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their mirrors. Furthermore, these mirrors may share or publicize any infor-

mation they receive. However, for most of this chapter (until Section 3.5),

we assume a malicious mirror is honest-but-curious. In other words, it will

not corrupt or modify content, but it may collude with others and reveal

information that could pose a threat.

• In Section 3.5, we relax the prior assumption and assume that a mirror may

act in a Byzantine manner, including modifying content.

To retrieve information privately from potential honest-but-curious mirrors, a

client sends multiple requests to multiple mirrors. Some requests are for randomly

mixed blocks to “confuse" the malicious mirrors, and the rest of the requests are

carefully crafted so that, after collecting all the responses, the client is able to

decode and get all the data blocks she wants. In the scenario described here, we

assume all the working mirrors generate correct responses and the client receives

the responses correctly.

A PIR scheme protects client queries against collusion by malicious mirrors.

We measure the privacy of a PIR scheme using a threshold model called k-safe

PIR.

Definition 1. A client information retrieval scheme is k-safe if it does not re-

veal any information about the client’s query as long as the number of malicious

mirrors is no greater than k.

3.2 Single-Block PIR Scheme

In this section, we formally develop our multi-block PIR scheme, which re-

trieves multiple data blocks with low communication overhead. We focus on PIR
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schemes that use only the binary XOR operation. We show that Chor-PIR, a

k-safe PIR scheme for downloading a single block, can be extended to download

multiple blocks with significantly reduced communication overhead, while main-

taining the same information retrieval privacy against k malicious mirrors.

3.2.1 Notations

For clarity of presentation, we will use the following notations throughout the

paper:

• D is the database containingN equal-sized data blocks,D =

[
B1 B2 . . . BN

]
,

with each data block being a bit string with S bits.

• el =

[
0 0 . . . 1 . . . 0

]T
is the position vector with |el|= N and only

the l-th bit is one.

• Ci is the block encoding the coefficient vector to be sent to the i-th mirror.

Ci is a column vector with dimension N .

• Ei is the linearly encoded data block sent back by the i-th mirror to the

client. Ei = D × Ci, where addition and multiplication are defined in a

finite field.

• k is the number of colluders. The client’s query will not be revealed as long

as no more than k mirrors collude.

3.2.2 Single-Block PIR

PIR of a single block has been studied extensively in previous works [21, 25,

26, 55, 56]. Using the Chor-PIR protocol, which achieves privacy with up to k



www.manaraa.com

40

colluding mirrors, the client has to first download k randomly mixed blocks from k

different mirrors, and then download the desired block (mixed with the k randomly

mixed blocks) from the mirror k + 1. More precisely, to download block l:

1. The client generates k random bit strings {ξi, 1 ≤ i ≤ k}, with |ξi|= N , and

sends ξi to mirror i as the block encoding coefficients:

Ci = {ξij, 1 ≤ j ≤ N}, 1 ≤ i ≤ k.

2. Mirror i returns to the client the encoded block:

Ei = D × Ci , ⊕Nj=1ξijBj,

where the string operation is bit-wise, with XOR ⊕ addition and binary

multiplication. Equivalently, the mirror works in the two-element finite field

GF (2).

3. The client sends to the mirror k + 1 the encoding coefficient vector:

Ck+1 = ⊕ki=1ξi ⊕ el.

4. Mirror k + 1 returns the encoded block:

Ek+1 = D × (⊕ki=1ξi ⊕ el).
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5. Finally, the client decodes the data block l:

⊕k+1
i=1Ei = Dξ1 ⊕ · · · ⊕Dξk ⊕D(⊕ki=1ξi ⊕ el)

= D ×
(
ξ1 ⊕ · · · ⊕ ξk ⊕ (⊕ki=1ξi ⊕ el)

)
= D × el = Bl.

Figure 3.1 shows a simple example of using Chor-PIR to privately retrieve a

data block from two mirrors with k = 1 and l = 4.

Figure 3.1: Diagram of a Chor-PIR scheme to retrieve one data block

Due to the random bit strings {ξi, 1 ≤ i ≤ k}, the privacy of the client’s

query is preserved unless k + 1 mirrors collude. The privacy comes at the price

of downloading k + 1 mixed data blocks to decode one original data block. If we

assume that each mirror is malicious independently with probability p̂, then the

probability that the data query will never be revealed is:

Privacy_Chor(p̂, k) = 1− p̂(k+1). (3.1)

The communication overhead, or the number of extra blocks needed to retrieve

one data block, is:

Overhead_Chor(p̂, k) = k. (3.2)
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According to Equation (3.1), given a malicious mirror probability p̂, one has to

choose a large k to achieve a high level of privacy, leading to high communication

overhead.

3.3 Binary Multi-Block PIR (BMB-PIR)

When a client needs to download multiple blocks privately, one naïve way is

to download each block independently using Chor-PIR. Then each block incurs a

communication overhead of k. To reduce the communication overhead, one can

try to reuse the randomly mixed data blocks from the first k mirrors, and then

download another data block (say t) from mirror k + 2 by sending a bit string

Ck+2 = ⊕ki=1ξi ⊕ et. Unfortunately, if mirror k + 1 and mirror k + 2 collude, then

they only need to add the encoding coefficient vectors from the client,

Ck+1 ⊕ Ck+2 = (⊕ki=1ξi ⊕ el)⊕ (⊕ki=1ξi ⊕ et) = el ⊕ et,

to eliminate all the random strings, and discover that the client wants to download

blocks l and t. A more refined download scheme is needed to reuse the randomly

mixed blocks and reduce the communication overhead.

3.3.1 Multi-Block Download Scheme

We propose a scheme for multi-block PIR based on the binary XOR operation

to achieve privacy when up to k mirrors collude.

Definition 2. k-Safe Binary Matrix: we call a binary matrix R k-safe if any k

columns of R are linearly independent under XOR addition.
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If we can generate a k-safe binary matrix of the form:

R
〈k〉
n×m =



1 ∗ . . . ∗ v1,n+1 . . . v1,m

0 1
. . . ... v2,n+1 . . . v2,m

... . . . . . . ∗ ... . . .
...

0 . . . 0 1 vn,n+1 . . . vn,m


n×m

(3.3)

= [RL
〈k〉
n×n|RR

〈k〉
n×(m−n)], (3.4)

then we can downloadm−n data blocks by reusing n randomly mixed data blocks

and achieve privacy when up to k mirrors collude. Note that RL〈k〉n×n is an upper

diagonal matrix. Here is the client downloading strategy:

1. The client generates an N × n random binary matrix:

F , [ξ1, ξ2, · · · , ξn],

where ξi is the i-th column, corresponding to a random binary string with

length N .

2. The client sends mirror i the encoding vector:

Ci = F ×RL〈k〉n×n(i), 1 ≤ i ≤ n,

where RL〈k〉n×n(i) is the i-th column of matrix RL〈k〉n×n.

3. Mirror i sends back to the client an encoded block:

Ei = D × Ci.
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4. The client decodes the n randomly mixed blocks by computing Dξi as:

Dξi = [E1, · · · , En]×RL−1(i), 1 ≤ i ≤ n,

where RL−1 is the inverse matrix of RL〈k〉n×n, and RL−1(i) is its i-th column.

5. The client sends to mirror n+ j the encoding vector:

Cn+j = F ×RR〈k〉n×(m−n)(j)⊕ epj , 1 ≤ j ≤ m− n,

where pj is the index of the j-th data block the client wants to download.

6. Mirror n+ j returns to the client the encoded block:

En+j = D ×
(
F ×RR〈k〉n×(m−n)(j)⊕ epj

)
= [Dξ1, · · · , Dξn]×RR〈k〉n×(m−n)(j)⊕Depj

= ⊕ni=1vi,n+jDξi ⊕Bpj .

7. The client decodes block pj as:

Bpj = En+j ⊕ni=1 vi,n+jDξi, 1 ≤ j ≤ m− n.

Since R〈k〉n×m is k-safe, then by definition, any subset of up to k mirrors cannot

cancel out the random strings {ξ1, ξ2, · · · , ξn} by manipulating their received cod-

ing strings Ci from the client. So the client can download m − n data blocks by

first downloading n randomly mixed data blocks, and achieve privacy with up to

k colluding mirrors. If the client wants to download more than m − n blocks, it

has to repeat the process.
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3.3.2 Construction of k-safe Binary Matrix

The dimensions of a k-safe binary matrix determine the number of randomly

mixed blocks the client needs to download and the number of data blocks it can

thereafter retrieve. Now the challenge is to construct R〈k〉n×m with small download

overhead n
m−n . The single-block Chor-PIR is a special case of the multi-block

scheme with

R
〈k〉
k×(k+1) =



1 0 . . . 0 1

0 1 . . . 0 1

...
... . . . ...

...

0 . . . . . . 1 1


k×(k+1)

,

which we call the basis k-safe matrix. It is easy to check if any of the k columns

are linearly independent. Unfortunately, the communication overhead introduced

by the basis k-safe matrix is k, which is too high. Now we propose an iterative

algorithm to grow the basis k-safe matrix to reduce the communication overhead.

By duplicating matrix R〈k〉k×(k+1) from left to right, adding a bk/2c-safe matrix to

the bottom right and filling zeros in the bottom left, we have:

R
〈k〉
d(k,2k+2)×(2k+2) ,

R〈k〉k×(k+1) R
〈k〉
k×(k+1)

0 R
〈bk/2c〉
d(bk/2c,k+1)×(k+1)

 , (3.5)

where R〈bk/2c〉d(bk/2c,k+1)×(k+1) is a bk/2c-safe matrix with k + 1 columns. The number

of rows is determined by a function d(k,m). For the basis k-safe matrix, we have

d(k, k + 1) = k.

Proposition 3.3.1. The binary matrix R〈k〉d(k,2k+2)×(2k+2) constructed in (3.5) is

k-safe.
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Proof. Since any k columns of R〈k〉k×(k+1) are linearly independent, if we apply

Gaussian column elimination with XOR addition to any k columns of the expanded

matrix R〈k〉d(k,2k+2)×(2k+2), the only way to cancel out the upper portion of k columns

of R〈k〉d(k,2k+2)×(2k+2) is to take exactly the same bk/2c vectors from the left and right

halves. However, since the bottom-right matrix is bk/2c-safe, the bottom portion

of those k columns will never be canceled out. So R〈k〉d(k,2k+2)×(2k+2) is indeed k-

safe.

According to the expansion process, we have

d (k, 2k + 2) = d (k, k + 1) + d (bk/2c, k + 1) .

By switching columns, we can convert R〈k〉d(k,2k+2)×(2k+2) into a k-safe matrix of the

form in (3.3), with m = 2k + 2, n = d(k, 2k + 2). The left upper triangular

property ensures that the left side square matrix is invertible.

More generally, given a k-safe matrix R〈k〉d(k,m)×m with m columns and d(k,m)

rows, one can expand it into a k-safe matrix with 2m columns using a similar

process:

R
〈k〉
d(k,2m)×2m =

R〈k〉d(k,m)×m R
〈k〉
d(k,m)×m

0 R
〈bk/2c〉
d(bk/2c,m)×m

 ,
with d (k, 2m) = d (k,m) + d (bk/2c,m). The proof is a straightforward extension

of Proposition 3.3.1.
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For example, if we set k = 4, then the 4-safe matrix (without expansion) is:

R =



1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1


4×5

.

After one expansion, we see that:

R =



1 0 0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 0 1 1

0 0 1 0 0 0 0 1 1 1

0 0 0 1 0 0 1 0 1 1

0 0 0 0 1 0 1 1 0 0

0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 0 1 0


7×10

.

The overhead and privacy of Chor-PIR are analyzed in Equation (3.1) and

(3.2) respectively. For BMB-PIR based on a k-safe binary matrix R〈k〉d(k,m)×m, we

use m mirrors to download m − d(k,m) data blocks in a k-safe manner. If each

mirror is malicious with probability p̂, then the query privacy is preserved if no

more than k mirrors are malicious. Therefore, the privacy of BMB-PIR can be

calculated as:

Privacy_BMB(k,m, p̂) =
k∑
i=0

(
m

i

)
p̂i (1− p̂)m−i . (3.6)
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Figure 3.2: In BMB-PIR, as the number of employed mirrors increases, the communication
overhead decreases. However, the privacy level also decreases.

And the communication overhead is:

Overhead_BMB(k,m) =
d (k,m)

m− d (k,m)
. (3.7)

For the 4-safe example considered in this section, we can see that the overhead is

4 without expansion. After one round of expansion, the overhead becomes 2.3333,

a reduction of nearly 40%.
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3.4 Multi-Block PIR over a Finite Field (FMB-

PIR)

For a given dimension n, there are only a limited number of linearly indepen-

dent binary vectors. As a result, a k-safe binary matrix will have large dimensions,

leading to high communication overhead. To further reduce this overhead, we can

work with a matrix in which each entry takes a value from a larger finite field.

The binary multi-block PIR we studied in the previous section is a special case of

a finite field with two elements. A finite field with higher cardinality enables us

to find more k-safe vectors without expanding the dimensions of the matrix.

Definition 3. k-Safe Matrix in Finite Field: We say that a matrix R in a finite

field F is k-safe if any k columns of R are linearly independent under the addition

and multiplication operations of F .

3.4.1 Construction of k-safe Binary Matrix

It is convenient to find k-safe matrices in a finite field F using the Vandermonde

matrix of the form:

Vk×m =



1 1 . . . 1

x11 x12 . . . x1m
...

...
...

...

x
(k−1)
1 x

(k−1)
2 . . . x

(k−1)
m


, (3.8)
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where m ≥ k and xi ∈ F , 1 ≤ i ≤ m. It is well-known that the determinant of a

square Vandermonde matrix (m = k) is:

|Vk×k|=
∏

1≤i<j≤k

(xj − xi). (3.9)

If all xj in Vk×m are distinct, then according to (3.9), any k×k sub-matrix of Vk×m

has a non-zero determinant; i.e., any k columns of Vk×m are linearly independent.

Therefore, Vk×m as constructed in (3.8) is a k-safe matrix as long as all xj are

distinct. We partition the k-safe matrix into two submatrices:

Vk×m = [V Lk×k|V Rk×(m−k)].

Vandermonde matrices have been widely used in constructing erasure codes (such

as the Reed-Solomon error-correcting code) to detect and correct errors and era-

sures. They are also used in Shamir’s secret sharing in cryptography. PIR pro-

tocols based on Shamir’s secret sharing were developed in [29, 57]. As discussed,

those protocols are designed to be robust against Byzantine mirrors. However, we

use finite field arithmetic here to reduce the communication overhead of multi-

block PIR.

3.4.2 Multi-Block Download Scheme

Now we describe our multi-block PIR over general finite fields. For clarity of

presentation, we use GF (28) as the underlying finite field (but the process holds

true over other finite fields). With GF (28), each data block Bi in database D is

divided into 8-bit chunks. The pseudocode of the FMB-PIR protocol is presented

in Algorithm 1. The input parameters are: N , the total number of data blocks in
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Algorithm 1: The FMB-PIR protocol
Input: N , k, m, and {ep1 , ep2 , . . . , ep(m−k)

}
Output: {Bp1 , Bp2 , . . . , Bp(m−k)

}
1 Client Initialization:
2 create Vandermonde matrix: Vk×m;
3 create random matrix in GF (28): FN×k = [ξ1, ξ2, · · · , ξk], where the i-th

column ξi = {ξij ∈ GF (28), 1 ≤ j ≤ N}
4 calculate request coefficient matrix: WN×m = FN×k × Vk×m
5 for i = 1 to k do
6 client sends request vector Ci = WN×m(i) to mirror i
7 client gets encoded data block Ei = D × Ci from mirror i
8 end
9 client decodes D × F = [E1, · · · , Ek]× V L−1k×k

10 for j = 1 to m− k do
11 client sends Ck+j = WN×m(k + j) + epj to mirror k + j;
12 client gets encoded data block Ek+j = D ×

(
F × Vk×m(k + j) + epj

)
from mirror k + j

13 client decodes block pj as Bpj = Ek+j − [Dξ1, · · · , Dξk]× Vk×m(k + j)

14 end

D; m, the total number of mirrors; k, the maximum number of malicious mirrors;

and {epi}, the position vectors corresponding to the blocks the client wants to

download. The output of the algorithm is the data blocks the client wants. The

client generates a k×m Vandermonde matrix, and an N × k random matrix, and

then uses them to derive a request coefficient matrix. In the first for loop, the

client sends coding coefficient vectors to k mirrors and downloads k encoded data

blocks. Then the client uses the received data blocks to decode the k randomly

mixed blocks according to F . In the second for loop, the client contacts an

additional m−k mirrors, and retrieves one data block from each mirror using the

requesting and decoding strategy given in Algorithm 1.

Since Vk×m is k-safe, by definition, any subset of up to k mirrors cannot can-

cel out the random vectors {ξ1, ξ2, · · · , ξk} by manipulating their received coding

strings Ci from the client. So the client can download up to m − k desired data
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blocks by first downloading k randomly mixed data blocks to achieve query privacy

against up to k colluding mirrors. In GF (28), the maximum number of distinct

elements is 256, so given m ≤ 256 mirrors, the largest number of data blocks that

can be downloaded using the Vandermonde matrix constructed above is m − k.

The following is an example of a 5-safe matrix in GF (28) with 10 vectors:

R =



1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9

0 1 4 5 16 17 20 21 64 65

0 1 8 15 64 85 120 107 58 115

0 1 16 17 29 28 13 12 205 204


5×10

.

3.4.3 Computational Cost

With FMB-PIR, each mirror simply multiplies the database DS×N with the

request vector CN×1. This takes less than S
8
N additions and exactly S

8
N multi-

plications of GF (28). On the client end, to prepare the randomly mixed blocks

the client must generate the k request vectors C1, . . . , Ck, compute an inverse

matrix, and multiply the responses by the inverse matrix. The resulting num-

ber of additions is less than k2N + S
8
k2 + k3, in which k3 is the cost of matrix

inversion, which will not be significant, since a reasonable k will not be very

large. The number of multiplications is also less than k2N + S
8
k2 + k3. The

computational cost of getting m − k data blocks is the cost of generating the

m − k request vectors Ck+1, . . . , Cm, (less than k(m − k)N + (m − k)N addi-

tions and k(m − k)N multiplications) and the cost of decoding the data blocks

(S
8
(km−k2+m−k) additions and S

8
(km−k2) multiplications). There are in total
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(k(m−k)+m−k)N+S
8
(km−k2+m−k) additions and k(m−k)N+S

8
(km−k2) mul-

tiplications. Hence, we get k2N+S
8
k2+k3+(k(m−k)+m−k)N+S

8
(km−k2+m−k)

additions and k2N + S
8
k2 + k3 + k(m− k)N + S

8
(km− k2) multiplications on the

client end. In practice, k and m are small numbers (e.g. 5 and 8). Given k and

m, the number of additions and multiplications is O (S +N), where S is the size

of each data block and N is the number of data blocks in the database.

For a k-safe FMB-PIR with m mirrors, the privacy level remains the same as

equation (3.6), but the communication overhead becomes:

Overhead_FMB(k,m) =
k

m− k
. (3.10)

Given a probability p̂ = 0.1 that a mirror is honest-but-curious, Tables 3.1

through 3.3 report for the Chor-PIR, BMB-PIR and FMB-PIR protocols the low-

est communication overhead that each can achieve at target privacy levels p̄ rang-

ing from 0.9 to 0.99999, and the corresponding best 〈k,m〉 settings. We see that

when the number of mirrors increases, BMB-PIR achieves nearly 33% overhead

reduction over Chor-PIR. FMB-PIR has a significant improvement on overhead

when we choose a large m. For example, at m ≤ 64, the overhead is about 10

times less than Chor-PIR. Although the computational cost in GF (28) of basic

operations such as addition and multiplication is much higher than the cost of

these operations in GF (2) (as will be seen in Section 3.6), the overall performance

of FMB-PIR is generally very good.
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Table 3.1: Lowest overhead achieved by Chor-PIR at different privacy levels

Privacy 〈k,m〉 Overhead
0.9 〈1, 2〉 1
0.99 〈1, 2〉 1
0.999 〈2, 3〉 2
0.9999 〈3, 4〉 3
0.99999 〈4, 5〉 4

Table 3.2: Lowest overhead achieved by BMB-PIR at different privacy levels

Privacy m ≤ 8 m ≤ 16 m ≤ 32 m ≤ 64 m ≤ 128 m ≤ 256
overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉

0.9 0.3333 〈1, 4〉 0.3333 〈1, 4〉 0.3333 〈1, 4〉 0.3333 〈1, 4〉 0.3333 〈1, 4〉 0.3333 〈1, 4〉
0.99 1 〈1, 2〉 1 〈1, 2〉 1 〈1, 2〉 1 〈1, 2〉 1 〈1, 2〉 1 〈1, 2〉
0.999 2 〈2, 3〉 2 〈2, 3〉 2 〈2, 3〉 1.9091 〈15, 64〉 1.9091 〈15, 64〉 1.9091 〈15, 64〉
0.9999 3 〈3, 4〉 2.2 〈7, 16〉 2.2 〈7, 16〉 2.2 〈7, 16〉 2.2 〈7, 16〉 2.2 〈7, 16〉
0.99999 4 〈4, 5〉 4 〈4, 5〉 3.8 〈11, 24〉 3.8 〈11, 24〉 3.4138 〈31, 128〉 3.4138 〈31, 128〉

Table 3.3: Lowest overhead achieved by FMB-PIR at different privacy levels

Privacy m ≤ 8 m ≤ 16 m ≤ 32 m ≤ 64 m ≤ 128 m ≤ 256
overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉 overhead 〈k,m〉

0.9 0.3333 〈2, 8〉 0.2222 〈2, 11〉 0.1852 〈5, 32〉 0.1668 〈9, 63〉 0.1524 〈16, 121〉 0.1396 〈31, 253〉
0.99 0.6 〈3, 8〉 0.4 〈4, 14〉 0.2917 〈7, 31〉 0.2308 〈12, 64〉 0.1961 〈20, 122〉 0.1689 〈37, 256〉
0.999 1 〈4, 8〉 0.6 〈6, 16〉 0.3913 〈9, 32〉 0.2917 〈14, 62〉 0.2308 〈24, 128〉 0.1907 〈41, 256〉
0.9999 1.6667 〈5, 8〉 0.7778 〈7, 16〉 0.5 〈10, 30〉 0.3478 〈16, 62〉 0.2626 〈26, 125〉 0.211 〈44, 252〉
0.99999 2.5 〈5, 7〉 1 〈8, 16〉 0.6 〈12, 32〉 0.4 〈18, 63〉 0.2929 〈29, 128〉 0.2304 〈47, 251〉

3.5 Robustness against Byzantine Failures

The previous analysis assumes the mirrors work correctly. However, if some

mirrors act in a Byzantine manner or fail, the client still can correctly retrieve

the data using Algorithm 2. The idea is to repeatedly download k + 1 blocks (k

mixed blocks plus 1 data block) until the data block is decoded successfully. The

remaining m − k − 1 data blocks, will be downloaded and decoded one by one.

If the client fails to decode, she simply switches to another random mirror and

downloads the data block until it is successfully decoded.

For the clarity of presentation, we only show the communication overhead of

FMB-PIR here. Communication overhead of BMB-PIR can be similarly derived.

Assume that a mirror fails with probability p̄. In order to successfully decode the
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Algorithm 2: Detect and retransmit protocol
Input: k, m, and {C1, C2, . . . , Cm−k}
Output: {Bp1 , Bp2 , . . . , Bp(m−k)

}
1 Client Initialization:
2 for i = 1 to k do
3 client randomly chooses a mirror, sends request vector Ci and gets

encoded data block Ei
4 end
5 client randomly chooses a mirror, sends request vector Ck+j, j = 1 and gets

encoded data block Ek+j
6 client decodes Bp1

7 if client fails to decode Bp1 then
8 go back to Step 2;
9 end

10 for j = 2 to m− k do
11 client randomly chooses a mirror, sends request vector Ck+j and gets

encoded data block Ek+j
12 client decodes Bpj

13 if client fails to decode Bpj then
14 go back to Step 11;
15 end
16 end

first data block, the client needs to download a number of blocks as per:

(k + 1)×
∞∑
L=1

L[1− (1− p̄)k+1](L−1)(1− p̄)k+1

=
k + 1

(1− p̄)k+1

(3.11)

To decode the remaining m − k − 1 data blocks, the client needs to download a

number of blocks as follows:

(m− k − 1)×
∞∑
L=1

Lp̄(L−1)(1− p̄) =
m− k − 1

1− p̄
(3.12)

Hence, the overall communication overhead under mirror Byzantine failure prob-
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ability p̄ is:
k + 1 + (m− k − 1)(1− p̄)k

(m− k)(1− p̄)k+1
− 1 (3.13)

3.6 Performance Evaluation

To determine whether our proposed solutions are practical, we conducted a

performance evaluation. In particular, we focused on several key aspects of sys-

tem performance, notably the communication overhead, the mirror goodput, and

client-perceived retrieval time.

3.6.1 Implementation

We implemented BMB-PIR and FMB-PIR in a mix of C and Python code.

The majority of the functionality is written in Python, with operations requir-

ing high efficiency operations programmed in C. The former allowed us to keep

our implementation simple and easy to test, while delegating to the latter, more

expensive tasks (e.g. finite field arithmetic) to more optimized code.

In BMB-PIR and FMB-PIR, the mirror computation time and data block

download time can overlap, allowing for higher performance. As a result, the

implementation concurrently requests the data blocks from multiple mirrors.

Both BMB-PIR and FMB-PIR generate an associated set of k-safe matrices

between every m − n data block request. As a result, up to m − n data blocks

can be fetched and decoded in parallel. Note that it would be possible to prepare

more than one set of associated k-safe matrices ahead of time, perhaps in the

background. This could be used to decode up to m − n data blocks without the

usual setup time.
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3.6.2 Setup

We tested each protocol on a 2GB database consisting of 1,024 2MB data

blocks. We ran the PIR mirrors for each protocol on ten Amazon EC2 in-

stances [58] located in the United States (one each in Virginia, California and

Oregon), the European Union (two in Ireland), South America (two in São Paulo)

and Asia (two in Tokyo and one in Singapore). This means that our mirrors

were distributed around the world, much like existing software mirrors or Internet

clients, so that we could test the protocols on realistic network conditions.

We chose each instance to be an m1.large machine, which meant that it had

two 64-bit virtual cores with two EC2 Compute Units each, 7.5 GiB of memory

and moderate I/O performance. This meant that we had sufficient CPU cores for

reasonable concurrency and more than sufficient memory to keep our database in

main memory. (Note that these specifications are common hardware for software

mirrors.) The client was a computer with an Intel Core i7-2600 Processor (4 cores,

8M Cache, up to 3.80 GHz) and 11 GB of main memory located in the Eastern

United States.

In order to balance the network requests, a new set of mirrors of the desired

number were randomly sampled on every set of data block requests. However,

since the total number of mirrors is limited to ten, we reused the mirrors when-

ever we needed more than ten of them. This helped to keep the experiments

manageable and allowed us to simulate reasonably busy mirrors. Given that our

implementation fetches data blocks concurrently, we believe that reusing mirrors

has little impact on our results.

Unless otherwise specified, we assume the probability that a mirror will ma-

liciously disclose information to be p̂ = 0.1. We set the target privacy p̄ to be
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in {0.9, 0.99, 0.999, 0.9999, 0.99999} and the total number of mirrors m to be in

{8, 16, 32, 64, 128, 256}. For each protocol of interest, we obtained a set of values

for k and m that provide the lowest communication overhead as determined by

equations (3.2), (3.7) and (3.10).

We analyzed the performance of the BMB-PIR and FMB-PIR protocols as

compared to upPIR [23], a highly optimized implementation of the Chor-PIR

protocol adapted for private yet efficient software updates. We chose upPIR for

comparison because BMB-PIR is a generalization of the foundational Chor-PIR

protocol, while FMB-PIR is a generalized extension of BMB-PIR.

For upPIR, we retrieved ten data blocks for each setting of k andm. For FMB-

PIR, we retrieved m − k data blocks for each setting of k and m. (This means

that the number of fetched data blocks varied over each setting.) Similarly, for

BMB-PIR, we retrieved m− d(k,m) data blocks for each setting of k and m. For

each PIR scheme and each parameter setting, we repeated the experiment three

times and reported the statistics. With these statistics, we are able to explore

several key aspects of performance.

3.6.3 Results

We found that the observed communication overhead for FMB-PIR and BMB-

PIR precisely matched the expected overhead. We noticed that the wall clock time

spent on network operations (such as data marshaling, and more importantly,

waiting for the mirror to produce the encoded data block) dominated the time

spent on local computation (such as generating k-safe matrices, and encoding or

decoding a block). Of course, as the values for k and m increased, then so did the

average client computing time, but the network wall clock time was always the
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dominating cost. Concurrently fetching the data blocks proved to yield significant

gains in the average time to fetch a data block.

We found that upPIR was more efficient than BMB-PIR in terms of commu-

nication overhead for small values of k and m, but less efficient than FMB-PIR.

Moreover, the expected overhead quickly reaches the point for large k andm where

upPIR is worse than BMB-PIR and FMB-PIR protocols because the communica-

tion overhead for every data block request proved to be sufficiently prohibitive. An

important finding is that, in many cases, a computationally efficient PIR protocol

will not sufficiently compensate for its communication overhead.

Communication Overhead
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Figure 3.3: Communication overhead

For every setting of p̄ and m over each protocol, we computed the k and

m that yielded the target privacy closest to p̄ with the lowest communication

overhead. The results are shown in Tables 3.1 through 3.3. For example, if we

choose p̄ = 0.9999 and m ≤ 32, then 〈k = 3,m = 4〉 gives the lowest overhead

of 3 for upPIR, whereas 〈k = 7,m = 16〉 gives the lowest overhead of 2.2 for

BMB-PIR, and 〈k = 10,m = 30〉 gives the lowest overhead of 0.5 for FMB-PIR.
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So while BMB-PIR’s savings over upPIR are significant, FMB-PIR is far superior

to either.

Figure 3.3 shows the measured percentage of overhead (the percentage of ex-

tra blocks downloaded for every data block) given target privacy for our protocols

of interest. As the target privacy increases, upPIR has to employ more mirrors.

Consequently, its overhead increases multiplicatively. upPIR only downloads one

data block at a time. Meanwhile, both BMB-PIR and FMB-PIR can concur-

rently download multiple data blocks by reusing the common set of randomly

mixed preparation blocks. At each target privacy level, as the number of mirrors

increases, BMB-PIR and FMB-PIR are able to increase download concurrency

and decrease overhead. Even with 0.99999 privacy, the overhead ranges from 60%

to 23% when at least 32 mirrors can be used.

Mirror Goodput

Table 3.4: BMB/FMB PIR mirror goodput (Mbps) at different privacy levels

Privacy m ≤ 8 m ≤ 16 m ≤ 32 m ≤ 64 m ≤ 128 m ≤ 256
BMB FMB BMB FMB BMB FMB BMB FMB BMB FMB BMB FMB

0.9 9.32 2.91 9.32 3.17 9.32 3.27 9.32 3.32 9.32 3.36 9.32 3.40
0.99 6.22 2.42 6.22 2.77 6.22 3.00 6.22 3.15 6.22 3.24 6.22 3.32
0.999 4.14 1.94 4.14 2.42 4.14 2.79 4.27 3.00 4.27 3.15 4.17 3.26
0.9999 3.11 1.45 3.88 2.18 3.88 2.59 3.88 2.88 3.88 3.07 3.88 3.20
0.99999 2.49 1.11 2.49 1.94 2.59 2.42 2.59 2.77 2.82 3.00 2.82 3.15

We then measured the goodput, (i.e., the amount of useful data a mirror is

able to produce in a second). Goodput is an important metric in evaluating a PIR

protocol because what matters is not simply how much data a mirror is able to

produce in a second, but rather how much of it is actually valuable to clients. For

example, if a mirror is able to produce 5 blocks in a second, of which 4 are mixed

blocks and 1 is a data block for a client, then the goodput must factor in the

additional time to produce the additional 4 mixed blocks in the time to produce 1
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data block. Therefore, the mirror goodput is 1 out of 5 blocks per second in this

case.

Given the same number of mirrors and a target privacy level, Table 3.4 com-

pares the mirror goodput with BMB-PIR and FMB-PIR. With only a few mir-

rors or a low target privacy level, BMB-PIR can produce higher goodput than

FMB-PIR. In both cases, the lower communication overhead of FMB-PIR was

insufficient to win over the faster block production of BMB-PIR. However, as the

number of mirrors or targeted privacy level increase, we find that the performance

gap between these two will decrease once a certain threshold is reached. FMB-PIR

starts to outperform BMB-PIR. As the number of mirrors increases, the goodput

of FMB-PIR will increase more rapidly than BMB-PIR.
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Figure 3.4: Data block retrieval time

Figure 3.4 displays the average time measured in seconds to retrieve a data

block given a target privacy. For both FMB-PIR and BMB-PIR, it is the total

time to concurrently fetch and decodem−n data blocks (including the production
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of k-safe matrices and n preparation blocks) averaged over the total number of

fetched data blocks.

FMB-PIR shows a substantial reduction in download time compared to both

upPIR and BMB-PIR, especially as the number of mirrors or target privacy in-

creases. BMB-PIR is faster in mirror operations (like upPIR), but has higher

overhead; consequently, it has better performance when the number of mirrors

is small (and thus the mirror computation time is a more important consider-

ation). With FMB-PIR, the reduction in communication overhead when 32 or

more mirrors are available eventually outweighs the mirror’s penalty of finite field

arithmetic. As a result, even with target of 0.99999 privacy, FMB-PIR with 64

or more mirrors available can retrieve a block a second (a goodput of about 2MB

per second).

Future Optimizations

We could further optimize our algorithms to improve their performance. In the

current BMB-PIR implementation, an associated k-safe matrix is lazily generated

for each group ofm−n data block requests. This means that only up tom−n data

blocks are concurrently fetched. Due to the low computation overhead on mirrors,

we can concurrently download multiple groups of data block requests, with each

group consisting of m− n requests and associated with a k-safe matrix. This will

significantly reduce the block retrieval time for BMB-PIR, and equalize it with the

current implementation of FMB-PIR. The current implementation of FMB-PIR

is able to download more data blocks at once with a k-safe matrix simply because

it has a much lower overhead. BMB-PIR performance can be further improved

by concurrently generating k-safe matrices in the background while the client is

busy fetching data blocks; this would amortize the computational cost so that it



www.manaraa.com

63

becomes insignificant compared to the communication cost.

3.7 Summary

In this work, we described a fast multi-block PIR scheme that is capable of

efficiently and privately downloading multiple data blocks. Specifically, we first

showed that Chor’s PIR scheme can be extended to download multiple data blocks

at a time by a recursive construction to produce larger k-safe matrices from smaller

ones. This reduces the communication overhead of multi-block PIR retrieval and

has excellent mirror goodput. We also demonstrated that, by working in a finite

field, a multi-block PIR scheme can achieve significantly reduced overhead, albeit

at the cost of mirror goodput. Experiments over real world Internet hosts demon-

strate that multi-block PIR schemes are computationally fast while significantly

outperforming existing PIR schemes in multiple ways. As a result, these protocols

can be used in practice to retrieve both small files, such as security updates, and

large files, such as disk images, privately and efficiently.
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Chapter 4

CacheCash: A

Cryptocurrency-based Decentralized

Content Delivery Service

This chapter describes work done as part of a joint research initiative conducted

with Ghada Almashaqbeh, Allison Bishop Lewko, and Justin Cappos. Discussion

in this chapter is limited to the parts of the work I was most involved with: the

design of a data service protocol and an evaluation of the system’s performance.

Ghada and I worked independently of each other in formulating CacheCash. She

developed the threat model, and conducted the security, and economic analyses.

We collaborated in the design of the data service protocol. Professors Lewko and

Cappos provided analysis, feedback, and guidance on our efforts.

Online content delivery has witnessed a large growth in the last decade and is

expected to grow at a rate of 40% - 45% per year [59]. This content is generated

by various centralized content providers (e.g. Netflix, Amazon, etc.) and by end

users through media distribution applications and social networks (e.g. Youtube,

64
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Twitter, etc.). Content providers are challenged to handle this huge workload

while balancing service quality and cost concerns.

Content delivery networks (CDNs) have emerged as an attractive solution to

distribute the workload [35–37]. The core idea is to replicate the media content

and disburse it among geographically distributed servers (or caches), which serve

clients on behalf of the original content providers. Content providers may con-

struct their own CDN or buy the service from a third party, such as Akamai [38].

Unfortunately, infrastructure-based CDNs are considered expensive due to de-

ployment and continuous maintenance costs. Due to this expense, peer-assisted

CDNs, inspired by peer-to-peer (P2P) networks, have evolved as a low overhead

and decentralized solution. These peer-assisted CDNs rely on exploiting the end

users’ bandwidth to distribute data [39,40]. However, such a network requires al-

lowing any user to be a part of it, which raises several challenging questions: What

motivates peers to use their bandwidth to serve others? Can we trust any party

to distribute the correct content? And is there a guarantee that these parties will

follow the protocol?

In this work, we propose a system called CacheCash that combines the best fea-

tures of CDNs and Bitcoin. CacheCash is a cryptocurrency-based storage/bandwidth

market where users can rent their storage and sell their extra bandwidth to content

providers. It adopts the layered structure from CDNs in which content providers

own the material, but delegate the task of serving clients to caches, which dis-

tribute replications of this content. Like a P2P network, CacheCash allows anyone

to join the system as either a content provider or as a cache. Content providers

pay caches to serve their clients. Hence, CacheCash enables the building of dy-

namic CDNs with lower overhead than infrastructure-based networks, but in a

more organized way than in P2P networks. To ensure fair payments and account-
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ability, CacheCash provides a publicly-verifiable service that uses a blockchain as

a trusted log to make cheating detectable, and thus, unprofitable.

In reconfiguring these existing technologies, the CacheCash system is able

to make two novel claims. The first is that it supports a realistic distributed

environment that can offer both efficient and secure service without the need for

a trusted authority/party. And the second is that it can secure the system, in

part, by making cheating much less profitable. Content providers achieve a high

degree of efficiency by batching responses to clients’ requests, and by offloading,

as one response, all the needed information to proceed in any service session.

Furthermore, CacheCash utilizes a customized probabilistic micropayment scheme

that is able to reduce the number of transactions that need to be logged on the

blockchain. This scheme features a modified version of the Bitcoin protocol that

supports the additional logic and transaction types needed to handle payments,

verify the correct service, and detect cheating. All transactions are made in the

basic currency unit, Cachecoin, which can be exchanged with any other altcoin or

fiat currency.

CacheCash is designed to work well in practice, addressing both security and

performance concerns. Threats that may result from deviant behaviors of selfish

participants are neutralized either cryptographically or economically. The former

is achieved by employing various cryptographic primitives/protocols to ensure

confidentiality, integrity, and unforgeability. The latter is achieved by introducing

a game theoretic model of the economic aspects of the system, which operates

under the assumption of rational participants. Finally, benchmarks of CacheCash

demonstrate its efficiency in terms of computational and bandwidth overhead,

and show that it can easily scale to handle large scale CDN dissemination, such

as distributing Netflix content.
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4.1 Related Work

In this section we reviewed previous work that are related to two fundamentals

of CacheCash: peer-assisted CDNs and cryptocurrencies.

Using monetary incentives to attract participants [39, 41, 60, 61] were initially

proposed to overcome the free-riders problem of people reaping the benefits of the

CDN without contributing. One early system, KARMA [60], tracks payments in

the form of scores that increase whenever a peer consumes resources to serve other

clients, and decrease once she receives a service. Floodgate [61] uses micropay-

ments to pay for delivered service, making the content provider the trusted party

who tracks payments. Dandelion [39], on the other hand, is a hybrid incentive-

based system that employs both monetary and bandwidth exchange incentives.

Hincent [41] provides a more flexible design by allowing peers to set price agree-

ments with clients, and thus better prioritize service.

The main drawback of the aforementioned proposals is that they assume the

existence of a centralized trusted party to track these payments and resolve dis-

putes. CacheCash does not rely on any central authority to issue payments or

monitor the free-rider issues in its peer-based network. To secure the payments,

CacheCash applies a cryptocurrency-based probabilistic micropayment scheme.

The free-rider problem is resolved by running a data co-location puzzle game to

check caches’ bandwidth utilization.

Earlier examples of cryptocurrency proposals followed satoshi-style blockchain

techniques, such as Bitcoin, Litecoin [9], Monero [62], and Zerocoin [63]. These

proposals all leverage computationally-expensive processes, namely, proof-of-work

(POW) scheme to reach consensus on transactions and deter certain types of at-

tacks. However, the criticism of these approaches is that they waste computational
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power without adding any intrinsic value. To address such concerns, recent cryp-

tocurrencies have sought to provide some type of added service. For example,

Primecoin [64] rewards finding long chains of prime numbers, so-called Cunning-

ham chains. Nooshare [65] proposes substituting POW with scheduled Markov-

Chain Monte-Carlo simulations. Namecoin [66] provides a private, censorship-

resistant domain name service by paying peers periodically to maintain the regis-

tered domains.

A few cryptocurrencies aim to provide distributed services as well, especially

cloud storage services. Some propose their own cryptocurrency networks. Others

offer frameworks that run on top of existing blockchains. These approaches utilize

a modified POW scheme, such as a smart contract [67] or a proof-of-retrievability

(POR) formula [68] , to achieve peer consensus and secure transactions.

Ethereum [7] created its own blockchain and currency market. Its open blockchain

platform allows users to build decentralized applications to execute codes, facili-

tated by propagating transactions in the form of smart contracts. To create new

blocks, miners have to verify these contracts and run the codes. Thus, network ap-

plications, such as storage service, can be implemented on top of a smart contract

and be executed in a decentralized routine. However, every node in Ethereum

has to execute the contract if it is interested, raising a computational arm race

problem. In addition, Ethereum brings unnecessary computational complexity to

a pure monetary transaction, thus reducing the liquidity of the currency.

Filecoin [46], Permacoin [69], and Retricoin [70] incorporate distributed data

storage services with their own blockchains. Unlike Bitcoin and other traditional

cryptocurrencies, these altcoins require miners to invest not only computational

resources, but also storage. Filecoin allows users to upload and download their

own files to the network, while the other two aim to maintain a large static data
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pool among all miners to allow for recoverability, even after a catastrophic failure.

In Filecoin, currency is awarded for storing files, and is transferred in transactions,

similar to Bitcoin. Similarly, Permacoin and Retricoin reward miners for storing

encoded shares of the large archive. In addition, Retricoin claims to have lower

storage overhead and network bandwidth requirements than that of Permacoin,

and provides pool mining options as well. All three of these altcoins rely on POR

techniques to verify the data stored by miners locally in order to reach consensus.

If a miner claims to create a new block, she needs to submit proof that she pos-

sesses the data locally in a way that can be verified publicly by the entire network.

However, for Permacoin and Retricoin, it is arguable whether it is economically

worthwhile to mobilize so many users to contribute both computational resources

and storage for the sole purpose of maintaining a static file.

Instead of announcing new cryptocurrencies, Metadisk [44], also known as

Storj, offers a distributed storage service framework that runs on top of existing

blockchains. Different from Permacoin and Retricoin, Metadisk users can choose

peers to store their content by signing contracts. Both parties in Metadisk can

negotiate the price and time to store the content. Once an agreement is reached,

a user sends an encrypted shard of her file to this peer. Metadisk also leverages a

POR scheme to verify the integrity of the data stored by miners. It offers a pay-

as-you-go model where peers are paid with some frequency by the users. Since

users only upload encrypted files to peers, the security and recoverability of the

file rely on the encryption/decryption key pairs and the erasure code technique.

Other projects, such as Sia [71] and MaidSAFE [72], provide similar services with

a few tweaks, such as integrating a smart contract and improving the efficiency of

operations.

Compared to the proposals mentioned above, CacheCash has several funda-
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mental differences. Firstly, CacheCash does not invent its own blockchain. In-

stead, it incorporates its technology with other existing cryptocurrencies. Miners

still follow the original POW process, but need to verify additional types of trans-

actions. Secondly, CacheCash aims to provide a decentralized content delivery

service, not storage. Although correctly storing the content is one crucial part,

CacheCash does not periodically audit caches, since this can be done implicitly

in the content delivery process. Thirdly, different from most projects that en-

dorse a POR, CacheCash proposes its own data co-location puzzle game that can

check multiple data blocks at once, and therefore ensures the integrity of its data

service. Lastly, the incentive for caches participating in CacheCash lies in the

economic fact that any entity should act honestly in order to get its fair share,

and everyone’s profit can be maximized.

4.2 CacheCash Design Overview

This section presents a high level description of the design and operation of

CacheCash. We start with the main challenges and issues that guided the system

design.

4.2.1 Design Challenges

It is challenging to build a system where all parties (even malicious ones) are

economically incentivized to act toward a common goal. Enforcing security and

trust is a necessity. Yet, efficiency is also crucial for the system to be of actual

use. Content providers seek trusted networks of caches that provide wide coverage

but at low cost. Users want to work as caches in these networks, but without the

additional cost of dedicated hardware. Thus, both are trying to maximize profits
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while minimizing overhead. On the other hand, clients are just interested in

retrieving content and are not concerned with this profit dilemma. They usually

are willing to either pay indirectly (e.g., watch advertisements) or directly (e.g.,

subscribe to Netflix) for this content. To meet all these interests, the following

principles directed the design decisions of CacheCash:

• Content providers begin with content that they make available for caches to

serve. No prior knowledge about these content providers/caches is available.

Participants are identified using public keys that can be easily changed.

• The purpose of using CDNs is to reduce the amount of interaction between

clients and the content provider by delegating expensive portions of the client

service to caches. Thus, much like what happens on popular sites, such as

YouTube or Netflix, some small communication happens with the content

provider (e.g., logging in or issuing search requests), but the bulk of the

data actually comes from caches. In this configuration, clients send content

requests to the content provider and get back replies that enable them to

fully retrieve the data from caches. This enables content providers to reply

to a larger number of clients, and it enables clients to get faster service, as

no further delays are incurred while waiting for additional responses from

content providers.

• Under the assumption of rational participants, content providers aim to

serve the maximum number of clients while paying the minimum service fee

to caches. Caches want to collect the maximum possible payments while

providing the least amount of resources (specifically bandwidth). Malicious

content providers may try to avoid paying caches, and malicious caches may

try to be paid without working. The system must provide a guarantee that
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honest caches will be paid, and honest content providers will have their

clients served. Thus, payments and service must be intertwined in a way

that forces both parties to be honest untill the end of the service session.

• It is highly desirable to have both the service delivery and the payment

process publicly verifiable. Anyone should be able to verify that: a content

provider has a database with specific content, a content provider is able to

pay caches, clients are served correctly, and caches are paid. This feature

has the advantage of making many types of cheating detectable, and thus,

with proper economic penalties, it can be made unprofitable.

• It is tempting to achieve public verifiability by logging everything on the

blockchain. However, this will explode its size and increase the workload

of the miners to process the huge number of messages/transactions. Conse-

quently, we need techniques and primitives that provide succinct represen-

tation and selectivity of what will be published on the blockchain.

There are issues related to the cryptocurrency system that must be considered

as well, such as the stability of the currency value, and how to encourage miners

to hold the stake of the system, and to make users trust the new currency enough

to join the system. These issues are beyond the scope of this work and will be

introduced in a successive work that deals with the financial aspects. The goal

of this research is to introduce the service-related issues, and argue about the

system’s security and efficiency levels.

4.2.2 Network Model

CacheCash’s operation is based on forming a dynamic network of content

providers, clients, and caches who can join and leave the system at any point
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Figure 4.1: CacheCash network model.

in time. As depicted in Figure 4.1, the network model consists of M content

providers CP1, ..., CPM , N caches C1, ..., CN , and an arbitrary number of clients

CL1, .... Each CPj produces and maintains a content database composed of L

equally-sized data blocks, denoted as B1, ..., BL. A copy of this database is shared

with all caches who are willing to work with CPj. CPj publishes data block

manifests and a signed hash of her database publicly to enable caches to verify

the correctness of the shared content. Any cache Ci may concurrently work with

several content providers if it owns sufficient storage/bandwidth (e.g. cache C2 in

Figure 4.1).

For efficiency reasons, the system operation is divided into batches. During

each batch the content provider aggregates all clients’ requests and replies to them

at once. Similarly, the micropayment scheme operation is divided into rounds.

Each round is the time needed to mine a block on the blockchain, and it is defined
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by the index of a confirmed block on the blockchain. Note that a batch period (e.g.,

milliseconds) is much smaller than a round period (e.g., minutes) since content

providers must reply to clients in a timely manner.

4.2.3 Cryptographic Primitives

CacheCash employs several cryptographic primitives to secure its operation.

Based on the protocol design, as will be shown shortly, each retrieved data block

is protected by two layers of encryption. We refer to the outer and inner en-

cryption layers as Eouter and Einner, respectively, and both are implemented using

symmetric key encryption algorithms. The inner/outer session encryption keys

used by cache Ci are denoted as kin,i and kout,i, respectively. The session keys are

refreshed for each service session and generated using a pseudorandom function

(PRF). This PRF is keyed with master keys that are generated/exchanged in ad-

vance. There are two sets of master keys: KM,CP,Ci
which are shared between the

content provider and cache Ci and used to generate kin,i, and KM,Ci
known only

to Ci and used to generate kout,i. We let σ denote a digital signature on a specific

message for which each party maintains a private/public key pair to sign/verify

the issued messages. The public key is used as the ID that identifies any party

within the system.

4.2.4 System Overview

At the core of CacheCash is an incentivized data service protocol that en-

sures data delivery to clients and payments to caches. Caches are paid per each

data block they serve. As expected, this will result in a large number of small

value payments that, if performed naively, could overwhelm the blockchain. To
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Figure 4.2: CacheCash operation.

solve this problem, we devise a decentralized probabilistic micropayment scheme,

conceptually similar to prior work [73,74], that is compatible with the CacheCash

operation. Namely, we utilize the lottery concept in which payments take the form

of lottery tickets and winning tickets only result in currency transfer transactions.

In this chapter, we give only a brief overview of the micropayments system. How-

ever, full details, including transaction types and processing, and the format of

the lottery tickets, will be discussed in a follow-up work.

Another issue related to payments is when to pay for the delivered service.

Paying caches in advance is not reasonable, as malicious ones may get payments

without serving clients. On the other hand, paying caches after the service makes

sense only when sending encrypted data blocks. In this case, caches do not send

the decryption keys unless they receive valid lottery tickets. Nevertheless, mali-

cious caches may send corrupted data, and get the lottery tickets without sending

the decryption keys. Thus, an honest content provider would lose currency, while

her clients get corrupted content. To reduce the loss to honest parties, we divide
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payments into two parts. Each cache gets two lottery tickets, denoted as tktL1

and tktL2, for every data block it serves. The cache must first commit bandwidth

before getting these tickets, which minimizes the benefit of a cache that accepts

tickets without serving clients. In addition, we compute the currency value of a

winning tktL1 based on how many winning tktL2 a cache has. This is done to

encourage caches to be loyal and complete the service session to the end, as they

will be interested in collecting both types of tickets.

Having two lottery tickets means that caches need two layers of encryption

to protect the served data blocks. Hence, each lottery ticket is traded with the

decryption key of each encryption layer. One key, kout,i is known to caches only

and is traded with tktL1 while kin,i is known to both the content provider and

caches and is traded with tktL2. Hence, if a malicious content provider does not

want to pay, the delivered data to the client is not useful, since only caches know

kout,i. On the other hand, if a cache stops prematurely after retrieving tktL2 the

data is still useful since the content provider can send the missing keys to the

client.

The system operation is depicted in Figure 4.2. As shown, both the content

provider and caches must complete a setup phase before starting the service. A

content provider who wishes to join CacheCash creates an escrow using a special

transaction denoted as EscTr. This transaction is verified by the miners and

published on the blockchain. EscTr provides a guarantee for caches that the

content provider can pay them for the service. In addition, it contains information

on how to reach the content provider and a signed hash of her content database.

Similarly, caches register with a content provider to join the system. As shown

in step 2 in Figure 4.2, this is done by exchanging a set of messages in what we call

a cache join protocol. During this protocol, a cache retrieves a copy of the content
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provider’s database, verifies its correctness, and proves to the content provider

that it has fully retrieved the database. Once a reasonable number of caches

join the content provider’s network, she completes the setup phase. This event is

announced to the miners (step 3 in Figure 4.2) and logged on the blockchain.

To start a service session, a client contacts a content provider asking for specific

content, such as a video, which is defined in terms of data block indices. A set of

n caches is selected to serve clients, with each cache Ci assigned a specific data

block Bi. We let the content provider select this set using any mechanism of her

choice. The content provider generates a reply to the client that contains a request

ticket (denoted as tktr), in addition to lottery tickets for caches. All these tickets,

along with other information, comprise the content provider’s reply to the client

(illustrated as steps 4 and 5 in Figure 4.2), and is called a tickets bundle. As

mentioned earlier, the content provider replies to all requests on a batch basis.

Hence, one signature covers all tickets bundles that belong to the same batch.

On its side, the client continues the service session by sending each request

ticket tktr,i to its designated cache. Ci replies with a double encrypted data block

denoted as EEBi. The decryption keys are sent to the client upon reception of the

lottery tickets, as mentioned earlier. As such, step 6 in the figure is a multi-step

interaction between the client and each Ci.

Caches keep their lottery tickets and run a lottery protocol to claim payments

using the winning tickets as depicted by steps 7 and 8 in Figure 4.2. The lottery

protocol is distributed and publicly verifiable. Furthermore, it guarantees with

high probability that all valid winning lottery tickets will be honored by the con-

tent provider, and that a ticket’s winning probability cannot be manipulated. For

this purpose, we tie the lottery with the confirmed blocks on the blockchain. In

detail, each lottery ticket contains three timestamps that specify the issue time
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of the ticket, the lottery draw time, and the redeem time. A winning ticket is

defined as the one with the least u bits of its hash matching the corresponding

bits of the hash of a block on the blockchain that has an index equal to the lottery

draw time. For example, consider the lottery ticket and the blockchain status in

Figure 4.3 with u = 8 bits. This ticket is a winning one since there is a hash

match with the block that carries the same index as the lottery draw time found

inside the ticket.

Two subtle issues arise here. First, a malicious content provider may issue

more lottery tickets than she can afford. Second, a malicious content provider

may manipulate the lottery winning probability by printing winning tickets after

seeing the hash of the block used in the lottery draw. We solve these issues by

computing the maximum number of tickets a content provider is allowed to issue

based on the escrow balance, and by making him commit to the issue time of these

tickets in advance. The latter is done by making the content provider commit to

the sequence numbers of the tickets that she can issue per round. The content

provider includes all this information in EscTr. Thus, anyone is able to verify

its correctness. For this purpose, additional fields are added to each lottery ticket

including a sequence number denoted as tseq, and the IDs of the destined cache,

the content provider, and the escrow to which this ticket is tied.

An example of lottery tickets commitment is shown in Figure 4.4. EscTr

includes the total number of tickets that can be issued using the locked currency

value. Based on the expected tickets issue rate, this number is divided among

the rounds that follow the confirmation of EscTr. Each round number is the

issue time of the tickets with the sequence numbers range assigned to the round.

In Figure 4.4, a content provider can afford 3000 tickets and she is expecting to

issue 1000 tickets per round. Her EscTr is included in block 10 on the blockchain
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Winning ticket

Blockchain

Block 1Block 0 Block 
40

... ... ...Block 
46

Block 
60

tktL1

Issue time = 30
Lottery draw time = 40
Redeem time = 60

tseq = 500

CP ID, Escrow ID

Cache ID

hash = 10110 ... 11011101

hash = 110001 ... 11011101

u bits

u bits

=?

Figure 4.3: Lottery draw example: the lottery draw time is 40, the ticket hash is taken over the
committed fields and compared with the hash of the block with an index that equals the lottery
draw time. The redeem time of this ticket is after Block 40 is confirmed untill time 60. After
that the ticket expires. Lottery over tktL2 proceeds in an analgous way.

and confirmed at the time of block 16 (assuming that a block is confirmed when

an additional 6 blocks are added to the blockchain on top of it). Thus, she

is allowed to issue tickets for 3 rounds, starting at round 17, with contiguous

sequence number ranges. All tickets that are issued in the same round enter the

lottery at the same time. Once the time of those rounds passes, the content

provider cannot use this escrow to issue lottery tickets. Thus, she has to create a

new escrow to continue serving her clients.

Anyone can validate the issue time of a lottery ticket by checking its tseq with

what is found in EscTr of the same escrow ID found in the ticket. Hence, in

the previous example, a lottery ticket with an issue time of 19 and tseq = 450 is

invalid. Since the content provider commits to the escrow ID, her ID, and tseq in

advance, we make the lottery hash cover those fields only, as shown in Figure 4.3.

Miners check the residual balance in the escrow after each payment transaction.

If it falls below a threshold value, miners break the escrow and distribute the

residual balance as shares among the content provider and her set of caches.
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Blockchain

Block 
10

Block 
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... Block 
17

EscTr

Issue rate = 1000 tkt/round

Other fields...

Balance = 500 Cachecoin
CP ID, Escrow ID

Tickets count = 3000

Block 
18

Block 
19

tseq = {1, ..., 1000}

tseq = {1001, ..., 2000}

tseq = {2001, ..., 3000}

EscTr Confirmed

Committed tseq ranges

Figure 4.4: Commitment to lottery tickets example.

Hence, caches are rewarded for storing unpopular content that has a low request

rate from clients. On the other hand, a content provider may not get a large

number of client requests. Hence, after redeeming all winning tickets, her escrow

will still contain currency. To avoid burning currency in the system, a content

provider sends a request to miners to return the remaining escrow balance. This

is possible as all lottery tickets expire after their redeem time.

One final issue is related to cheating detection in the system. If an entity

detects someone cheating during the data service protocol, it sends a proof-of-

cheating to the miners that contains all the needed evidence. Miners verify the

cheating incident and are able to economically punish the cheating party based

on the cheater’s role in the system, as will be shown later.
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4.3 Incentivized Data Service Protocol

4.3.1 Batching Client Requests

As mentioned earlier, a service session starts with a content request sent by

clients(CLs). For each request CL generates a sequence number rseq that is used

to check the freshness of the request, and to identify the service session. A content

provider(CP) aggregates all requests received within a batch and replies to them

all at once, as depicted in Figure 4.5. CP replies to each CL with a tickets bundle

that includes the following fields:

– Caches’ contact information, such as their IP addresses and port numbers.

– Group of request tickets tktr.

– Group of lottery tickets 1 (tktL1).

– One masked tktL2 denoted as mtktL2 (masking details are found in the next

subsection).

– Data co-location puzzle related fields (see the next subsection).

– CP’s batch signature over all ticket bundles in the current batch.

The field tktr is a set of n request tickets, each destined to a single cache Ci

and denoted as tktr,i. Each tktr,i is used to request one data block from Ci and

contains Ci’s ID, CL’s ID, the requested data block index, a hash of kin,i that will

be used by Ci during this session, and rseq:

tktr,i = IDCi
||IDCL||index(Bi)||h(kin,i)||rseq
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Figure 4.5: Batching client requests.

The inclusion of h(kin,i) enables Ci to check that its kin,i is identical to what

is used by CP. Thus, she cannot pretend that Ci uses an invalid key to accuse it

of cheating.

The field tktL1 is also a set of n individual lottery tickets each denoted as

tktL1,i and destined to Ci. On the other hand, tktL2 is a single ticket for all caches

(all caches get a copy of the same ticket) and it is not sent in the clear as tktL1.

Instead, it is masked using the results of the data co-location puzzle. This is done

to ensure that CL has retrieved all data blocks from caches before they received

tktL2. The purpose of having a single tktL2 is to address the case of a malicious

CL/CP who tries to send this ticket to malicious caches only to lower the value

of payments to honest caches.

For computational efficiency reasons, we make CP produce one signature over

all tickets bundles that belong to the same batch. In the signing process CP
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hashes the tickets bundles in several stages before signing. First, she hashes the

various fields in a tickets bundle individually. We refer to this set of hashes as

hbundle. Second, CP computes the hash of a single tickets bundle as the hash

of its hbundle. Lastly, CP computes the hash of all tickets bundles in the current

batch by computing a Merkle hash tree of their hashes, which we call mtreebundles.

The batch signature σCP,batch is simply CP’s signature over the root of this tree.

CP adds the following to each tickets bundle: root(mtreebundles), its membership

path in this tree, and σCP,batch. For simplicity, in what follows once we mention

σCP,batch we view it as a structure that contains hbundle, the membership path in

mtreebundles, root(mtreebundles), and CP’s signature over this tree root.

As for signature verification, CL first hashes the tickets bundle fields and

compares them with the received hbundle, checks the given membership path of

the hash of hbundle, and then verifies CP’s signature over the given root. Caches

use a slightly different method since they do not receive the full tickets bundle.

Instead, each cache Ci gets individual tickets at different stages within the service

session, and receives σCP,batch with the first ticket it gets from CL. Consequently,

Ci hashes the received hbundle and continues in a similar way to CL. However, to

check that a ticket is covered by this signature, Ci hashes the ticket and looks for

an identical hash in hbundle. If found, this means that σCP,batch covers the ticket

and it is accepted.

Before signing and sending the tickets bundle, CP has to compute the data

co-location puzzle over the raw data blocks requested by CL. This is needed to

produce mtktL2.
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4.3.2 Data Co-location Puzzle

As mentioned previously, caches receive two lottery tickets, tktL1 and tktL2,

for each data block they serve. There is a collusion risk between CL and caches

in which CL (who is not interested in the content) sends the lottery tickets to

caches without retrieving any data (i.e. performs a slacking attack). To address

this collusion case, we rely on the fact that tktL2 gives value to tktL1. For this

purpose, tktL2 is masked using a puzzle computed by CP over the requested data

blocks. Hence, CL needs to receive the data blocks first, compute this puzzle, and

then unmask tktL2 before sending it to caches.

To ensure efficiency, we want this puzzle to be computationally light for CPs

to ensure fast response time when replying to clients. On the other hand, we want

it to be heavier for CLs to make computing it in a malicious way expensive. Thus,

this puzzle is designed in a way that computing it by retrieving all data blocks

locally is cheaper than any malicious strategy. Thus, rational CL and caches will

choose to act honestly as it is more profitable.

The core idea is to encrypt and hash small pieces of the data blocks at random

locations to produce a single hash digest to be used in masking. For short, we

refer to this puzzle as the hash-encryption puzzle, abbreviated as HECP
puzzle and

HECL
puzzle for CP and CL, respectively. The input of HECP

puzzle is B1, ..., Bn, while

for HECL
puzzle it is EB1, ..., EBn. Nevertheless, both CL and CP produce the same

results. For this purpose, CP encrypts the data block pieces in the same way used

by caches, i.e., using the encryption algorithm and same kin,i used by each cache.

To enable such random encryption of data pieces, a parallelizable encryption

mode is needed. We selected AES in the counter mode (AES-CTR) to handle this

functionality. The initial value of the CTR mode counter for each block Bi, called
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ctri,initial, is generated using any method that makes both CP and Ci produce the

same value non-interactively. Moreover, this mechanism must produce a different

value for each session, even if it is over the same Bi. For example, one may use

encryption of some pieces of Bi and use the ciphertext as the counter value.

Algorithm 3: HECP
puzzle computation

Input: Data blocks Bi for i = 1, ..., n
Output: HECP

puzzle result and stopping criteria
1 /*Initialization*/:
2 for i = 1 to n do
3 Generate kin,i
4 Compute ctri,initial
5 end
6 Select m ∈ {1, ..., n} randomly.
7 Select sB1 randomly from Bm

8 Set offset(sB1) = address(sB1)−address(Bm)
size(sB)

9 Set location(sB1) = h(m||offset(sB1))
10 /*i is the data block index*/
11 Set i = m
12 for j = 1 to (n ∗Rpuzzle − 1) do
13 /*Compute ctr and encrypt sBj*/
14 ctrj = offset(sBj) + ctri,initial
15 cj = E(kin,i, ctrj, sBj)
16 /*Compute location and offset of sBj+1*/
17 location(sBj+1) = h(location(sBj)||cj)
18 offset(sBj+1) = location(sBj+1) mod size(Bi)

size(sBj)

19 i = (i mod n) + 1

20 end
21 Set u = n ∗Rpuzzle

22 Set result = location(sBu−1)
23 Set last = location(sBu)
24 return result, last, Rpuzzle

The details of HECP
puzzle computation are depicted in Algorithm 3. In this

algorithm, each Bi is divided into aligned sub-blocks of equal sizes, each denoted

as sB. Rpuzzle is the number of puzzle rounds, size(.) returns the size of its input



www.manaraa.com

86

in bytes, address(.) returns the starting address in memory, offset(.) returns the

index of sB within a data block Bi (the first sub-block has offset 0, the second one

has offset 1 and so on), location(.) returns some random value generated based on

its input, and h(.) is a hash function. Finally, result is the puzzle output, and the

stopping criteria include Rpuzzle and last, which is the sB’s location that comes

immediately after result.

CP starts by generating all the needed encryption keys and counters values.

Then, she picks a data block randomly and a starting point sB1 randomly inside

this block. For this starting point, CP computes its offset and location. The former

is deterministic and computed based on sB address distance from Bi starting

address. The latter can be computed using any method that produces a random

value, given that both CP and CL produce the same value non-interactively. After

that, CP computes the location and offset of the next sB in the nextBi and repeats

that for the required number of iterations as found in lines 14 - 19 in the above

algorithm. In this loop, CP works on the data blocks in a round robin fashion.

The purpose is to touch all data blocks in an approximately uniform way. As

shown, the puzzle output is the second to last computed sB location, while the

stopping criterion is the location of the last sB. The field of the data co-location

puzzle-related information inside a tickets bundle includes Puzzlestart, Rpuzzle,

and last.

The computation of HECL
puzzle is slightly different since the input is the inner

layer encrypted data blocks, not the raw ones. Since CL works on EB1, ..., EBn,

there is no need to encrypt sBi, and CL only computes the accumulated hash.

In addition, CL is given a set of possible starting points for the puzzle, denoted

as Puzzlestart. Thus, she recomputes the puzzle for every starting point untill

she finds the correct result. In fact, this is what makes the puzzle computation
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more extensive on CL’s side. The result correctness check is simply to test if the

value of last, which she receives from CP, equals location(sBn∗Rpuzzle
), which she

computes in the last iteration of the algorithm.

4.3.3 Data Blocks Retrieval

CL continues the service session by contacting caches to retrieve the data

blocks to fulfill her content request. In what follows, we describe this interaction

using notation similar to that used by Sirivianos et al. [39]. A pictorial illustration

is found in Figure 4.6.

CL C1, ..., Cn

Batch signature + tktr,1 ?  tktr,n

- Verify batch 
signature on tktr,i
- Generate session 
keys
- Double encrypt Bi

EEB1, EEB2, ? ., EEBn

- Check the size of 
EEBi
- Verify Ci signature 
over EEBi tktL1,1 ?  tktL1,n

Verify batch 
signature over tktL1,i

kout, 1  ?  kout,n

- Decrypt EEBi to get EBi
- Compute HEpuzzle and 
unmask tktL2.
- If tktL2 is invalid contact 
CP to resolve dispute.

tktL2

Verify batch 
signature over tktL2

kin,1  ?  kin,n

Decrypt EBi to get Bi 
and construct content

Figure 4.6: Data blocks retrieval from caches.

Step 1: CL forwards tktr,i along with σCP,batch to caches as follows:
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CL→ Ci : tktr,i||σCP,batch for i = 1, 2, ..., n

Step 2: Ci verifies CP’s signature over tktr,i and checks the freshness of rseq.

Then, it generates the needed session keys in the same way used by CP to generate

kin,i, while it uses kM,Ci
to generate kout,i. Those keys are used to double encrypt

Bi (i.e. EEBi = Ekout,i(Ekin,i
(Bi))) and the result is sent back to CL:

Ci → CL : EEBi for i = 1, 2, ..., n

Step 3: CL checks that the size of EEBi is comparable to the size of Bi and

verifies Ci’s signature over EEBi. If valid, she forwards tktL1,i to every cache as

an implicit request for kout,i:

CL→ Ci : tktL1,i for i = 1, 2, ..., n

Step 4: Ci validates tktL1,i as follows: verify σCP,batch over this ticket, check

that the ticket sequence number tseq is within the allowed range of the corre-

sponding escrow and has the correct issue time. If anything goes wrong Ci drops

CL’s request. However, in case that tseq is out of range, Ci issues a proof-of-

cheating against CP. If everything is correct, Ci sends kout,i to CL:

Ci → CL : kout,i for i = 1, 2, ..., n

Step 5.a: CL decrypts the outer layer of all EEBis. She uses EBi to com-

pute HECL
puzzle and unmasks tktL2. A correct unmasked tktL2 is sent to caches to

complete the service payments and to request kin,i:

CL→ Ci : tktL2 for i = 1, 2, ..., n

Step 5.b: An invalid unmasked tktL2 means that either a cache(s) has sent cor-
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rupted data, or a cache(s) has sent invalid kout,i, or CP has sent invalid HEpuzzle

stopping criteria to avoid paying caches tktL2. CL cannot identify the cheater,

hence, she contacts CP to investigate the situation by sending all the received

EEBi and kout,i from caches. If CP is not the cheater, she identifies the malicious

cache(s) and issues a proof-of-cheating to inform the miners. CP has kin,i used

by each Ci and she sent its hash earlier in tktr. Since caches replied with EEBi

this means that they agree that kin,i is identical to what they used. Otherwise,

they were supposed to drop the CL request. CP decrypts EBi received from CL

and checks the resulting data block by comparing its hash to the one found in

the escrow creation transaction. If it does not match, this means that Ci has sent

corrupted data or invalid kout,i. CP proves the cheating to the miners by sending

Ci’s responses, which include EEBi, kout,i, along with kin,i and the original tktr

that contains the hash of this key. Since Ci signs all the sent messages, it cannot

deny cheating or blame CP for anything. In addition, all these messages contain

rseq to bind them to the service session. Miners will check everything by verifying

signatures on the responses, and decrypting EBi in addition to comparing data

blocks hashes. The punishment of this cheating cache is discussed in the next

subsection. (The case of a cheater CP is handled by the economic analysis of the

system, as will be shown later.) Meanwhile, CP directs CL to contact other caches

to retrieve valid copies of the corrupted data blocks:

CL→ CP : EEBi, kout,i for i = 1, 2, ..., n

CP → miners : Proof-of-cheating against Ci (if any)

CP → CL : new tickets bundle

Step 6: Caches validate tktL2 as in Step 4 with one difference: they have to

mask this ticket before verifying the batch signature. The puzzle result is a field
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inside tktL2 and is used to produce mtktL2. The response of a correct ticket is to

send kin,i to CL:

Ci → CL : kin,i for i = 1, 2, ..., n

Step 7: Upon receiving kin,i, CL fully decrypts the data blocks and constructs

the requested content. In case of missing kin,i, CL contacts CP to get the missing

keys that complete the service session:

if(isReceived(kin,i)) for i = 1, 2, ..., n

CL constructs content.

else

CL→ CP : request missing kin,i

4.3.4 Proof-of-cheating Processing

Effective proof-of-cheating processing mechanisms are part of the financial im-

plications of CacheCash and thus not discussed at length in this work. A proof-

of-cheating is processed by miners as follows. First, they verify that there is

cheating using the provided information inside the proof that documents the inci-

dent. Then, they issue a punishment to compensate the honest parties that have

been harmed, and to discourage malicious entities from cheating again. For this

purpose, the proof must be irrefutable and undeniable (beside guaranteeing its

integrity).

The only punishment that has been well defined in CacheCash up untill now

is breaking the escrow of a malicious CP without giving him any share of its

currency balance. The punishment of caches, on the other hand, is a system design

parameter. One option is to remove this cache from all CPs cache lists. Finally,



www.manaraa.com

91

detecting a malicious CL does not impact our system since clients are not involved

in the payment process. They neither pay nor get paid. Thus, caches/CP may

have additional policies to handle these situations, such as ignoring or delaying

requests originated by misbehaving clients.

4.4 Performance Evaluation

In this section we evaluate CacheCash against several performance measures.

To better understand the performance and efficiency of our protocol, we want to

answer three important questions:

• How quickly does CacheCash serve content?

• How efficiently can clients retrieve this content?

• Can CacheCash scale to handle larger demands?

We set about answering these questions by implementing and conducting thor-

ough microbenchmarks on the CacheCash data service protocol. In what follows,

we describe the methodology of our test, and discuss the results obtained.

4.4.1 Methodology

In order to establish our microbenchmarks, we built reference implementations

in C of CacheCash modules, namely, a content provider, a client, and a cache.

For our microbenchmarks we isolated the constructions needed to compute the

performance metrics we wished to measure.

For the caches and content providers, our experiments were conducted using a

modest 64-bit desktop machine with a 4.0 GHz 4-core CPU, 16GB DDR 3 RAM,

and Linux Mint 17.3 Rosa of kernel version 3.19.0-32.
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Required broadband connection speed 0.5 Mbps
Recommended broadband connection speed 1.5 Mbps
Recommended for SD quality 3.0 Mbps
Recommended for HD quality 5.0 Mbps
Recommended for Ultra HD quality 25 Mbps

Table 4.1: Netflix internet connection speed recommendations

For the clients, we also employed a low-end five year old smartphone. The

2012 ZTE V887 model has 1GHz Dual-core Cortex-A9 CPU and 512 MB memory

and runs the Android OS 4.0.4 operating system.

To put our performance measures into context, we then compared our bench-

mark results to those of a large-scale, time-sensitive online video streaming ser-

vice. This service, the popular content provider Netflix, has stricter bandwidth

and network latency criteria than typical file sharing services. It currently claims

more than 83 million subscribers in 190 countries, enjoying more than 125 million

hours of TV shows and movies per day, supported by more than 10, 000 globally

deployed ISP/IXP servers [75]. In a recent paper [76], researchers identified 4, 669

Netflix ISP/IXP servers in 243 locations around the world. In North America, the

company alone accounted for more than 36% of downstream demands in 2015 [77].

We want to understand if and how CacheCash can scale to meet the tremendous

bandwidth demands of a content provider like Netflix.

The recommended Internet connection speed for end-users of Netflix is shown

in Table 4.1. The amount of traffic per server varies greatly, but most generate

100 Mbps to 1 Gbps traffic volume. The entire Netflix network generates 3.12

Tbps on average, and 4.88 Tbps at peak time. Table 4.2 shows lists of the prime

time bitrate for Netflix content streamed to Netflix members during a particular

month in different countries. In the US, the high, average, and low speed are 3.62

Mbps, 3.28 Mbps, and 1.88 Mbps, respectively.
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US UK France Japan India Brazil Australia
High (Mbps) 3.62 3.75 3.75 3.73 2.21 3.09 3.41
Average (Mbps) 3.22 3.46 3.24 3.41 1.78 2.57 2.85
Low (Mbps) 1.88 3.19 2.87 2.63 1.04 1.94 2.4

Table 4.2: Netflix ISP speed index

We use the statistics listed above as baseline facts to evaluate the performance

of CacheCash in the following sections.

4.4.2 Content Provider

When a service provider wants to deliver its content to end users, she can join

CacheCash as a content provider. According to the data service protocol, content

providers do not communicate with each other, which means each content provider

serves her clients independently. CacheCash encourages content providers to join

the system, and there is no limit on how many of them can join. In the follow-

ing paragraphs, we measure and analyze the performance of one single content

provider.

We are interested in knowing how quickly a content provider can generate data

and serve clients. As described in Section 4.3, a content provider is responsible

for receiving data block requests from clients, generating replies, and sending

replies back. In order to evaluate the performance of a content provider, we

first benchmark the puzzle game generator, the most computationally-expensive

module on the content provider end. Then we measure the average batch count

and reply size of data block replies. Finally, we estimate the throughput and

goodput of the content provider.
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Puzzle Game Generator

To prevent malicious caches cheating on the content provider by collocating

data, a client needs to verify the integrity of the received data by solving a puzzle

game and unlocking payment ticket 2. The puzzle game result is pre-generated

by the content provider when producing the data block reply to the client.

We are curious about how quickly a content provider can generate puzzle game

results. In order to generate one valid puzzle game output, a content provider

needs to perform a certain number of AES encryptions (AES-CTR-128 on 16-

byte data) and secure hash functions (SHA-256 on 16-byte data). The number

of operations is the number of caches per request times the number of puzzle

iteration rounds. According to Algorithm 3, each puzzle iteration round should

be at least 1 round such that collocating data among malicious caches would

not be beneficial. In our experiments, we set the range of number of caches per

request from 1 to 16, and the puzzle iteration rounds as 1, 2, 4, and 8, respectively.

To utilize all CPU cores, we spawn one puzzle game generating thread on each

core. We label two options for content database storage. With the warm cache

option, the entire database fits into RAM memory. With the cold cache option,

the database is retrieved from the hard disk. In the experiment, to simulate a

perfect cold cache, we exchangeably read different portions of the database from

the hard disk between any two adjacent puzzle games. To benchmark the puzzle

game generator, we assume the bandwidth is unlimited and let each individual

experiment solve 1 million puzzle games in sequence and record the time.

Figure 4.7 and 4.8 shows the number of puzzle game results produced per

second by the content provider in warm and cold caches, respectively. Single

thread results are shown on the left side, and four-thread results are shown on
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Figure 4.7: Puzzle generation speed (warm cache).
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Figure 4.8: Puzzle generation speed (cold cache).

the right side. We highlight the results when the number of caches per request

is at 2, 4, 8, and 16 by using four different colors. The rest of the results - those

taken at other numbers of caches per request (1, 3, 5, 6, ...) - are colored in

light grey. Each curve plots the number of puzzle games generated in millions

per second. The number of puzzle games generated falls gradually when either

puzzle iteration rounds or number of caches per request is increased. This result

is expected, based on the cost of puzzle game result computation described in the

previous paragraph.

To take a closer look at the results from two puzzle iteration rounds, we com-
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pare the warm and cold cache outputs in Figure 4.9. In both single and four-thread

cases, warm cache results are 30 − 40% higher than cold cache. When a content

provider has a large amount of content to serve, she usually places the most pop-

ular content into memory and leaves less popular files on the hard disk. The odds

are only a small percentage of clients would request unpopular content, which

means cold cache situations are less frequent. Hence, the following analysis will

mainly focus on warm cache outputs from 2 puzzle iteration rounds.
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Figure 4.9: Puzzle generation speed for warm and cold cache (Rpuzzle = 2).

A primary task for the content provider is to generate replies to client requests.

Upon receiving such a request, the content provider takes the following steps:

parses the request, generates puzzle game result, constructs a ticket bundle, and

signs and attaches batch information (discussed in Section 4.4.2). As a result, a

data block reply is created and sent back to the client. In our microbenchmark,
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we implement the whole process to produce data block replies. Without a doubt,

the puzzle game generator is the most computationally expensive module among

all these steps. The benchmark results show that the speed to generate data

block replies is mainly determined by the puzzle game generator (other factors

only incur an additional 0.05% cost). Therefore, we use the speed of puzzle game

generation as the metric of content provider service rate.

To put our results in context, we decided to test CacheCash performance using

a much in demand piece of content from Netflix.com. According to Netflix, 6.5%

of its 83 million subscribers watched at least one episode of the third season of

its political thriller “House of Cards” within a month of its release [78]. Based

on these numbers, we made an extreme assumption and proposed that all of the

users (∼5.2 million) watched the first episode immediately after its release. Given

the 0.375 MBps Netflix SD quality video rate and 1 MB data block size, users

would have generated requests for ∼ 2 million data blocks per second. As shown in

Figure 4.9b, a content provider in CacheCash generates ∼ 1 million tickets bundles

per second for the 2 caches case, which translates to ∼ 2 million data blocks per

second. This means that one single CacheCash content provider would be able

to handle this peak load of concurrent users. HD quality video rate (1.85MBps)

is about 5 times higher than SD quality rate. Therefore, in this extreme case, 5

CacheCash content providers are capable of generating the required bandwidth

for their clients.

Throughput and goodput

Knowing the content provider’s ability to generate data block replies, we want

to determine how much data a content provider can produce per second, or what

we call content provider throughput.
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It is straightforward that the total amount of data produced by a content

provider per second is the number of replies generated times the average reply size.

However, the content of these replies is not the content the client wants. Instead,

it is the block requests, payment tickets, and checksums that direct clients to

download the real content from caches.

We also want to know the total amount of content that a content provider

produces indirectly per second, which is called the goodput. This value tells us

precisely how quickly CacheCash can generate data.

By comparing these two results, we also know how efficiently the content

provider can serve clients.

Batch count and reply size

As we just mentioned, suppose the content provider is not bound by the band-

width. The total data she could generate in one second would depend on the size

of the data block reply. When the content provider generates a reply, she needs

to wait for the ticket bundles to be signed in batch, and attaches the batch in-

formation to the reply. In our experiment, we create one signing thread to utilize

100% usage of one CPU core to sign batch signatures. More specifically, in the

data block reply generation process, a reply generator adds its valid puzzle game

result from the puzzle game generator to the ticket bundle. It then pushes the

bundle hash into a circular buffer and waits for the signature. Meanwhile, the

signing thread continuously pops all available hashes from the buffer, calculates

the merkle tree path, signs the batch signature, and returns the useful information

to each reply generator. In this manner, the reply generator waits the minimum

time to get the batch signature. Our signing thread can produce on average 3, 568

ECDSA signatures per second. With merkle tree path calculation, the speed falls
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Figure 4.10: Average batch count.

nearly 8% to about 3, 300 queries per second. Therefore, we get the average batch

size of each reply. According to the specification, the size of batch information is:

sizebatch_info = #cache× 64 + dlog2 (batch_count)e × 33 + 178 (4.1)

, where #cache is the number of caches per request. The size of a reply is

sizereply = #cache× 390 + dlog2 (batch_count)e × 33 + 375 (4.2)

Throughout the composition, batch count does not have a major impact, because

merkle tree construction reduces the batch information logarithmically.

Figure 4.10 shows the average batch count, while Figure 4.11 and Figure 4.12
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Figure 4.11: Average data block reply size (warm cache).

show the data block reply size, given that the number of caches per reply ranges

from 1 to 16, and includes both warm and cold caches. With a higher number of

caches per reply, the size of batch information slightly increased, which is expected.

Comparing the single thread case with the four-thread case, even though the four-

thread has about 4 times higher batch counts than the single thread, the size of

the batch information does not increase linearly. In the four-thread case, the size

of batch information is only 5−14% more than what it is in the single thread case.

Therefore, the increment in data block reply size from one thread to four-thread

is insignificant.
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Figure 4.12: Average data block reply size (cold cache).

Throughput

The throughput is the amount of data that a content provider produces in

a second. Assuming it is unbounded by the bandwidth, we show the content

provider throughput in Figure 4.13 based on the content provider service rate and

data block reply size given in Section 4.4.2. We can see that the content provider

throughput is always no lower than 1.7 Gbps in a single thread.

Compared to Netflix, throughput from a single CacheCash content provider

always exceeds that of the top-rated Netflix server. However, this throughput

does not represent the amount of real content generated. Instead, these results

imply the bandwidth requirement for a content provider when fully loaded.
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Figure 4.13: Content provider throughput.
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Figure 4.14: Content provider goodput (warm cache).

The goodput is the total amount of data assigned by a content provider to all

caches to serve clients in one second. In other words, it represents the amount of
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Figure 4.15: Content provider goodput (cold cache).
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Figure 4.16: Goodput per content provider per byte.

actual content that a content provider produces per second. More specifically,

Goodput = num_reply_per_sec× num_cache_per_reply × block_size (4.3)
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Equation 4.3 indicates goodput is proportional to block size, which is shown in

Figures 4.14 and 4.15. With four caches per reply and a 1, 024 KB block size, the

content provider can produce more than 8 Tbps goodput in a single thread, and

30 Tbps with four threads. Compared to Netflix’s 4.88 Tbps entire network peak

traffic volume, CacheCash can dexterously achieve such a rate with a considerably

lighter system load.

Figure 4.16 shows how much real content it creates for each byte the content

provider generates. For example, a four-cache data block reply size is 2 KB. With

a 1, 024 KB block size, a client can download 4, 096 KB content, which is 2, 048

times more than the reply size. In this manner, whenever a client fails to retrieve

content from caches, she can simply send a new data block request to the content

provider. Therefore, we claim that the content provider is remarkably efficient in

term of communication overhead.

4.4.3 Cache

The cache plays an essential role in the CacheCash system. Unlike the content

provider, whose duty is to generate data block replies as auxiliary information to

help clients retrieve content, the cache directly serves the client with encrypted

content. In return, the cache gets paid by the content provider. The CacheCash

system encourages end users to contribute their spare computational power and

bandwidth as caches.

When a cache receives a block request from a client, she doubly encrypts the

data block using the AES-128-CTR mode with inner and outer keys. These keys

are shared with the content provider. Then she sends the encrypted data back to
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the client. After that, she gives the outer and inner keys to the client in exchange

for payment 1 and 2.

We are interested in the following questions:

• How fast can a cache generate encrypted content?

• How many clients can a cache serve in parallel?

• How many caches does CacheCash need to support a saturated content

provider?

In our experiment, we set up a cache and tested its strength to do AES-128-

CTR encryption. We ran it twice to benchmark the double encryption rate. The

results show that, with a single thread, a cache can produce approximately 700

Mbps encrypted data, while with four-threads, it can push the rate up to 2, 800

Mbps. This is the same rate that a home user can produce with a mid-end desktop.

Compared to Netflix ISP/IXP servers’ current peak rates, CacheCash cache can

be 2.7 to 7 times faster.

To evaluate cache performance with practical bandwidth allocation, we check

the major US ISP bandwidth for home users. Broadband cable Internet ser-

vices [79], such as Optimum and Time Warner, provide 5 to 35 Mbps uploading

bandwidth. Fiber optic Internet services [80], such as Verizon Fios and Google

Fiber support 50 to 1, 000 Mbps uploading bandwidth. According to Table 4.1

and Table 4.2, cable users can support up to 10 concurrent users, albeit uploading

bandwidth can create a bottleneck. Fiber optic users can take advantage of higher

bandwidth and can accommodate about 275 users in parallel. In this way, a cache

set up by a fiber optic user can essentially have the same performance as a top

ISP server for Netflix.
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In order to output huge network traffic volume, like that of Netflix, CacheCash

would need about 146, 000 fully-loaded broadband caches, or 5, 100 fiber optic

caches to provide 4.88 Tbps of throughput. However, home users could be incen-

tivized to join CacheCash as caches in order to make money. And to set up a

cache, a user needs only to run a simple piece of software. As peers keep merging

into the network, there is no reason why the CacheCash community can not grow

in a similar manner to that of a typical BitTorrent tracker site. Therefore, we

are confident that, after a cold startup, CacheCash will gradually grow to the size

of a typical BitTorrent site, such as the Pirate Bay (TPB), which has attracted

more than 5 million active users since 2007 [81]. If CacheCash has TPB’s scale,

the throughput of CacheCash would exceed 3, 500% of Netflix’s peak rate.

Under the above assumption, that the CacheCash network of caches would

number about 5 million, we wanted to know if it could store the entire 3.14 PB

Netflix database, and how many clients it could serve. The naïve method is to

distribute video episodes to each cache uniformly, regardless of their popularity.

This would mean every cache would store and run a 1 GB database, with 16

copies of every video episode. As such, for any given episode, CacheCash, running

in the warm cache case, could support about 1,700 users watching concurrently.

A better database deployment scheme could optimize storage for more efficient

distribution of content by ensuring that popular content has more duplicates in

caches to accommodate higher demands, while less popular items are carried in

lesser quantities.
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4.4.4 Client

When a client wants to download content, she first sends a data block request

to the content provider and receives a data block reply in return. The client

then contacts multiple caches to download doubly encrypted content. In order

to decrypt and retrieve the content, the client needs to play a lightweight version

of the puzzle game. A range of possible starting points are given by the content

provider in the data block reply. The client tries to solve the puzzle game from

these starting points one by one. If from one starting point she gets a puzzle result

for which the hash value matches one given by the content provider, this result is

the key to unlock payment ticket 2.

The client performance metric is related to how fast a client is able to retrieve

the requested data blocks after receiving the data block reply. It is a measure

driven by the interaction between the client and caches, though we are concerned

only with the client’s part in this process. Solving the puzzle game and decrypting

the data blocks are considered the primary operations that may incur delays on the

client’s side. Hence, we measure the speed of these two processes as representative

of this metric.

256 KB 512 KB 1024 KB 2048 KB
#Cache = 1 0.57 1.14 2.30 4.59
#Cache = 2 1.03 2.07 4.14 8.25
#Cache = 3 1.50 3.01 6.07 12.17
#Cache = 4 1.95 3.90 7.82 15.63
#Cache = 5 2.42 4.91 9.76 19.70
#Cache = 6 2.91 5.82 11.71 23.44
#Cache = 7 3.36 6.14 13.59 27.15
#Cache = 8 3.80 7.65 15.36 30.81

Table 4.3: Worst case puzzles solve time in seconds

Table 4.3 shows the worst case time, run using all possible starting points, for
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a client to solve one puzzle game. We see the time used to solve the puzzle game

increases proportionally to the block size and number of caches per request as

well. Take the 1, 024 KB block size and four-cache case, for example. The average

time to solve a puzzle game is 3.96 seconds, which means a client needs less than

1 second to solve the puzzle to retrieve 1 MB of encrypted content.

The client also needs to double decrypt the encrypted content. We conducted

an experiment on the smartphone and a single thread outputs a rate of 126 Mbps,

which is more than adequate for high definition streaming.

We also needed to consider CacheCash’s impact on power consumption, a

critical issue for smartphones. For this purpose, we ran microbenchmarks on the

smartphone to measure to what extent puzzle solving and double decryption drain

battery life. In order to meet the bandwidth requirement for average US Netflix

users, a client would need to spend 5.54 mW on decryption and 86.29 mW on

puzzle solving. The Netflix App consumed about 592 mW on our smartphone.

Consequently, only 13.24% of energy overhead must be added to watch online

streaming. The extra computation is much less energy intensive than the display

and network costs for the video.

4.5 Summary

We have presented CacheCash, a new cryptocurrency system that provides

a distributed content delivery service on top of a currency exchange medium.

CacheCash borrows the layered distinction of content providers, caches, and clients

from traditional CDNs, but combines these roles and relationships with the flexi-

bility of P2P networks. This enables content providers to create dynamic CDNs

at a low deployment cost. Most importantly, it utilizes both technical and eco-
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nomic strategies to ensure security. As a storage/bandwidth market, monetary

incentives in CacheCash motivate users to work in a collaborative and honest way

to achieve high revenues. The exhibited benchmark results provide insights about

the efficiency level of CacheCash. The system has outstanding content generation

speed. Its communication overhead is extremely low, thus making data service re-

markably efficient. Beyond that, the CacheCash system can scale to accommodate

huge network traffic demands and handle the load with few content providers.
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Chapter 5

Conclusion

5.1 Summary of Contributions

In this dissertation, we studied three key factors in the operation of collab-

orative distributed systems: performance, security, and the necessary incentives

to keep participants honest and reliable. We revealed the limitations of current

PIR schemes and CDN networks, and proposed efficient solutions, based on their

unique requirements, to exploit the full potential of these practical distributed

systems.

For the Bitcoin network, we conducted a thorough study on its public ledger:

the blockchain. In this measurement study, we characterized the behavior of both

solo and pool miners. Based on the BTC to USD exchange rate and miners’ trans-

action frequencies, we observed that many early miners who worked individually

with less-than-powerful devices, lost control of the BTCs they earned. With the

growth of the Bitcoin network, miners became more likely to join pools and col-

laboratively mine BTCs for a steady payout. In addition, they were more eager to

cash out their newly mined BTCs immediately to take a profit. We also estimated

110
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the upper bound of computational power for the Bitcoin network. According to

the economic model we proposed, the computational race among miners will con-

tinue and miners can persist in making a profit, until the overall network hashrate

reaches the sustainable bound.

For private information retrieval, we first revealed the limitations of current

works as described in the literature. Then we extended the classic multi-server PIR

protocol to make it more efficient by reusing randomly mixed data blocks across

multiple requests. The key to achieving more efficient performance is by using

faster XOR operations, which are shown to have similar goodput to FTP on re-

alistic datasets and deployment environments as more computationally-expensive

approaches. We also developed a finite-field based PIR scheme to further reduce

the communication overhead of our proposed binary multi-block PIR scheme.

Lastly, we proposed CacheCash, a cryptocurrency-based CDN network that al-

lows content providers to offload traffic using low cost cache deployment. Caches

are incentivized to serve clients honestly if they want to get paid. Both the de-

centralized consensus protocol and probabilistic micropayment scheme ensure fair

payments. We developed a reference implementation for CacheCash and eval-

uated its performance in terms of computational and bandwidth requirements.

The benchmark results demonstrate that our system scales well with huge net-

work traffic demands, and can quickly and efficiently deliver content to clients.

5.2 Future Work

Throughout this dissertation, we have focused on the analysis and design of

various collaborative distributed systems. While a lot of theoretical work was pro-

posed and extensive numerical simulations have been carried out for evaluation,
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these protocols, and algorithmic designs still await verification through real-world

implementations and evaluation of those results. For instance, the growth of the

Bitcoin network has experienced both highs and lows in terms of BTC exchange

prices. We conducted the measurement study during its growth period. Study-

ing current mining and transaction patterns, and using this data to validate our

economic forecast model is encouraged. In this way, we can further understand

miners behavior as the Bitcoin network grows.

A network application may have different components that perform inconsis-

tently within different operating systems. Therefore the theoretical analysis in

terms of computational complexity may not truly reflect the performance of a

practical system. In other words, an algorithmic design may be sound but when

building a practical system the performance might not be desirable. Thus, the

implementation and performance evaluation of a practical system becomes unde-

niably important. With CacheCash, the benchmark has shown its strength in both

content generation and its low overhead. Building an implementation prototype

and evaluating it on a large scale will help us understand and further optimize

the system.
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